Journal of Innovative Optical Health Sciences, Volume. 12, Issue 3, 1950013(2019)

Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity

Wen Liu1, Runze Chen1, and Sailing He1,2、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, P. R. China
  • 2School of Electrical Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
  • show less
    References(29)

    [1] [1] P. N. Prasad, Introduction to Biophotonics, Wiley-Interscience (2004).

    [2] [2] Y. F. Kong, J. Chen, F. Gao, R. Brydson, B. Johnson, G. Heath, Y. Zhang, L. Wu, D. J. Zhou, “Near-infrared fluorescent ribonuclease- A-encapsulated gold nanoclusters: Preparation, characterization, cancer targeting and imaging," Nanoscale 5, 1009–1017 (2013).

    [3] [3] P. F. Rong, P. Huang, Z. G. Liu, J. Lin, A. Jin, Y. Ma, G. Niu, L. Yu, W. B. Zeng, W. Wang, X. Y. Chen, “Protein-based photothermal theranostics for imaging-guided cancer therapy," Nanoscale 7, 16330–16336 (2015).

    [4] [4] J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, “High‐order non‐linear optical effects in organic luminogens with aggregation‐induced emission," Adv. Mater. 27, 2332–2339 (2015).

    [5] [5] X. Wu, X. X. He, K. M. Wang, C. Xie, B. Zhou, Z. H. Qing, “Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo," Nanoscale 2, 2244–2249 (2010).

    [6] [6] J. V. Frangioni, “In vivo near-infrared fluorescence imaging," Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    [7] [7] Q. Liu, B. D. Guo, Z. Y. Rao, B. H. Zhang, J. R. Gong, “Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging," Nano Lett. 13, 2436–2441 (2013).

    [8] [8] N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov,A.Ben-Yakar,“Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods," Nano Lett. 7, 941–945 (2007).

    [9] [9] N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramirez-Hernandez, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Sole, M. Bettinelli, D. Jaque, A. Speghini, “NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ Nanoparticles: Multifunctional nanoprobes for highly penetrating fluorescence bio-imaging," Acs. Nano 5, 8665–8671 (2011).

    [10] [10] F. Helmchen, W. Denk, “Deep tissue two-photon microscopy," Nat. Meth. 2, 932–940 (2005).

    [11] [11] B. G. Wang, K. Konig, K. J. Halbhuber, “Twophoton microscopy of deep intravital tissues and its merits in clinical research," J. Microsc-Oxford 238, 1–20 (2010).

    [12] [12] M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653–1656 (1998).

    [13] [13] Y. I. Park, K. T. Lee, Y. D. Suh, T. Hyeon, “Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multimodal in vivo imaging," Chem. Soc. Rev. 44, 1302–1317 (2015).

    [14] [14] M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337–3346 (2000).

    [15] [15] J.-W. Shen, J. Wang, D. Kong, X.-P. Yan, “Sub-20 nm sandwich-structured NaGdF4:Yb/Tm@NaLuF4:Yb/Tm@NaYF4 nanocrystals for in vivo upconversion luminescence/computed tomography imaging," RSC Adv. 4, 5088 (2014).

    [16] [16] Z. Deng, X. Li, Z. Xue, M. Jiang, Y. Li, S. Zeng, H. Liu, “A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1500 nm," Nanoscale 10, 9393–9400 (2018).

    [17] [17] W. You, D. Tu, W. Zheng, X. Shang, X. Song, S. Zhou, Y. Liu, R. Li, X. Chen, “Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications," Nanoscale 10, 11477–11484 (2018).

    [18] [18] F. Wang, X. Liu, “Upconversion multicolor finetuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles," J. Am. Chem. Soc. 130, 5642–5643 (2008).

    [19] [19] Y. Zhang, J. Qian, D. Wang, Y. Wang, S. He, “Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy," Angewandte Chemie 52, 1148–1151 (2013).

    [20] [20] A. Zebibula, N. Alifu, L. Xia, C. Sun, X. Yu, D. Xue, L. Liu, G. Li, J. Qian, “Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging," Adv. Funct. Mater. 28, 1703451 (2018).

    [21] [21] F. Wang, R. Deng, X. Liu, “Preparation of coreshell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes," Nat. Protocols 9, 1634–1644 (2014).

    [22] [22] X. Ge, L. Dong, L. Sun, Z. Song, R. Wei, L. Shi, H. Chen, “New nanoplatforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging," Nanoscale 7, 7206–7215 (2015).

    [23] [23] S. Wang, W. Xi, F. Cai, X. Zhao, Z. Xu, J. Qian, S. He, “Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging," Theranostics 5, 251–266 (2015).

    [24] [24] W. Liu, Y. Wang, X. Han, P. Lu, L. Zhu, C. Sun, J. Qian, S. He, “Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced three-photon near-infrared emission for in vivo brain angiography," Nanoscale 10, 10025–10032 (2018).

    [25] [25] Q. Li, Z. Wang, Y. Chen, G. Zhang, “Elemental bioimaging of PEGylated NaYF4:Yb/Tm/Gd upconversion nanoparticles in mice by laser ablation inductively coupled plasma mass spectrometry to study toxic side effects on the spleen, liver and kidneys," Metallomics Integr. Biometal Sci. 9, 1150–1156 (2017).

    [26] [26] C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles," ACS Nano 6, 4788–4795 (2012).

    [27] [27] H. Liu, C. T. Xu, D. Lindgren, H. Xie, D. Thomas, C. Gundlach, S. Andersson-Engels, “Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities," Nanoscale 5, 4770–4775 (2013).

    [28] [28] J. Zhou, Z. Liu, F. Y. Li, “Upconversion nanophosphors for small-animal imaging," Chem. Soc. Rev. 41, 1323–1349 (2012).

    [29] [29] X. Q. Ge, L. Dong, L. N. Sun, Z. M. Song, R. Y. Wei, L. Y. Shi, H. G. Chen, “New nanoplatforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging," Nanoscale 7, 7206–7215 (2015).

    Tools

    Get Citation

    Copy Citation Text

    Wen Liu, Runze Chen, Sailing He. Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity[J]. Journal of Innovative Optical Health Sciences, 2019, 12(3): 1950013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 16, 2018

    Accepted: Mar. 23, 2019

    Published Online: Sep. 4, 2019

    The Author Email: He Sailing (sailing@kth.se)

    DOI:10.1142/s1793545819500135

    Topics