Journal of Geo-information Science, Volume. 22, Issue 10, 2010(2020)

Water Body Extraction of High Resolution Remote Sensing Image based on Improved U-Net Network

Hongshu HE1...2, Xiaoxia HUANG1,*, Hongga LI1, Lingjia NI1,2, Xinge WANG3, Chong CHEN3 and Ze LIU3 |Show fewer author(s)
Author Affiliations
  • 1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Urban and Rural Planning Management Center of the Ministry of Housing and Urban-Rural Development,Beijing 100835, China
  • show less
    References(28)

    [1] LiK, WuS, DaiE et al. Flood loss analysis and quantitative risk assessment in China[J]. Natural Hazards, 63, 737-760(2012).

    [2] BondN R, LakeP, ArthingtonA H. The impacts of drought on freshwater ecosystems:an Australian perspective[J]. Hydrobiologia, 600, 3-16(2008).

    [3] LakeP S. Ecological effects of perturbation by drought in flowing waters[J]. Freshwater Biology, 48, 1161-1172(2003).

    [4] [4] 吴赛, 张秋文. 基于MODIS遥感数据的水体提取方法及模型研究[J]. 计算机与数字工程, 2005(7):1-4. [ WuS, ZhangQ W. Method and model of water body extraction based on remote sensing data of MODIS[J]. Computer & Digital Engineering, 2005(7):1-4. ] [ Wu S, Zhang Q W. Method and model of water body extraction based on remote sensing data of MODIS[J].Computer & Digital Engineering, 2005(7):1-4. ]

    [5] [5] 李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报(自然科学版), 2020,60(2):147-161. [ LiD, WuB S, ChenB W, et al. Review of waterbody information extraction based on satellite remote sensing[J]. Journal of Tsinghua University (Science and Technology), 2020,60(2):147-161. ] [ Li D, Wu B S, Chen B W, et al. Review of waterbody information extraction based on satellite remote sensing[J]. Journal of Tsinghua University (Science and Technology), 2020,60(2):147-161. ]

    [6] McfeetersS K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 17, 1425-1432(1996).

    [7] XuH. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 27, 3025-3033(2006).

    [8] [8] 都金康, 黄永胜, 冯学智, 等. SPOT卫星影像的水体提取方法及分类研究[J]. 遥感学报, 2001,5(3):214-219. [ DuJ K, HuangY S, FengX Z, et al. Study on water bodies extraction and classification from SPOT image[J]. Journal of Remote Sensing, 2001,5(3):214-219. ] [ Du J K, Huang Y S, Feng X Z, et al. Study on water bodies extraction and classification from SPOT image[J]. Journal of Remote Sensing, 2001,5(3):214-219. ]

    [9] [9] 王培培. 基于ETM影像的水体信息自动提取与分类研究[J]. 首都师范大学学报(自然科学版), 2009,30(6):75-79. [ WangP P. Automatic extraction and classification of water body from ETM image[J]. Journal of Capital Normal University (Natural Science Edition), 2009,30(6):75-79. ] [ Wang P P. Automatic extraction and classification of water body from ETM image[J]. Journal of Capital Normal University (Natural Science Edition), 2009,30(6):75-79. ]

    [10] [10] 胡德勇, 李京, 陈云浩, 等. 单波段单极化SAR图像水体和居民地信息提取方法研究[J]. 中国图象图形学报, 2008,13(2):257-263. [ HuD Y, LiJ, ChenY H, et al. Water and settlement area extraction from single band single poplarization SAR images based on SVM method[J]. Journal of Images and Graphics, 2008,13(2):257-263. ] [ Hu D Y, Li J, Chen Y H, et al. Water and settlement area extraction from single band single poplarization SAR images based on SVM method[J]. Journal of Images and Graphics, 2008,13(2):257-263. ]

    [11] HintonG E, SalakhutdinovR R. Reducing the dimensionality of data with neural networks[J]. Science, 313, 504-507(2006).

    [12] [12] 计梦予, 袭肖明, 于治楼. 基于深度学习的语义分割方法综述[J]. 信息技术与信息化, 2017(10):137-140. [ JiM Y, XiX M, YuZ L. A review of semantic segmentation based on deep learning[J]. Information Technology and Informatization, 2017(10):137-140. ] [ Ji M Y, Xi X M, Yu Z L. A review of semantic segmentation based on deep learning[J]. Information Technology and Informatization, 2017(10):137-140. ]

    [13] DarrellT, LongJ, ShelhamerE. Fully convolutional networks for semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431-3440(2015).

    [14] BadrinarayananV, HandaA, CipollaR. Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling[J]. ArXiv Preprint ArXiv:1505.07293, 117-124(2015).

    [15] BroxT, FischerP, RonnebergerO. U-net: Convolutional networks for biomedical image segmentation[C]. International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241(2015).

    [16] JayasumanaS, Romera-ParedesB, ZhengS et al. Conditional random fields as recurrent neural networks[C]. Proceedings of the IEEE International Conference on Computer Vision, 1529-1537(2015).

    [17] ChenY, FanR, YangX et al. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning[J]. Water, 10, 585(2018).

    [18] [18] 许玥. 基于改进Unet的遥感影像语义分割在地表水体变迁中的应用[D]. 重庆:重庆师范大学, 2019. [ XuY. Application of semantic segmentation of remote sensing image based on improved Unet in surface water change[D]. Chongqing: Chongqing Normal University, 2019. ] [Xu Y. Application of semantic segmentation of remote sensing image based on improved Unet in surface water change[D]. Chongqing: Chongqing Normal University, 2019. ]

    [19] [19] 陈前, 郑利娟, 李小娟, 等. 基于深度学习的高分遥感影像水体提取模型研究[J]. 地理与地理信息科学, 2019,35(4):43-49. [ ChenQ, ZhengL J, LiX J, et al. Water body extraction from highresolution satellite remote sensing images based on deep learning[J]. Geography and Geo-information Science, 2019,35(4):43-49. ] [ Chen Q, Zheng L J, Li X J, et al. Water body extraction from highresolution satellite remote sensing images based on deep learning[J]. Geography and Geo-information Science, 2019,35(4):43-49. ]

    [20] SimonyanK, ZissermanA. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409, 1556(2014).

    [21] LiY, GuoL, RaoJ et al. Road segmentation based on hybrid convolutional network for high-resolution visible remote sensing image[J]. IEEE Geoscience and Remote Sensing Letters, 16, 613-617(2018).

    [22] HuJ, LiL, LinY et al. A Comparison and strategy of semantic segmentation on remote sensing images[J]. arXiv preprint arXiv:1905, 10231(2019).

    [23] KoltunV, Kr?henbühlP. Efficient inference in fully connected crfs with gaussian edge potentials[C]. [C]. Advances in neural information processing systems, 109-117(2011).

    [24] ChenL-C, PapandreouG, KokkinosI et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. arXiv preprint arXiv:1412.7062, 97-105(2014).

    [25] [25] 刘懿兰, 黄晓霞, 李红旮, 等. 基于卷积神经网络与条件随机场方法提取乡镇非正规固体废弃物[J]. 地球信息科学学报, 2019,21(2):259-268. [ LiuY L, HuangX X, LiH G, et al. Extraction of irregular solid waste in rural based on Convolutional Neural Network and conditional random field method[J]. Journal of Geo-information Science, 2019,21(2):259-268. ] [ Liu Y L, Huang X X, Li H G, et al. Extraction of irregular solid waste in rural based on Convolutional Neural Network and conditional random field method[J]. Journal of Geo-information Science, 2019,21(2):259-268. ]

    [26] [26] 黄英来, 刘亚檀, 任洪娥. 基于全卷积神经网络的林木图像分割[J]. 计算机工程与应用, 2019,55(4):219-224. [ HuangY L, LiuY T, RenH E. Segmentation of forest image based on Fully Convolutional Neural Network[J]. Computer Engineering and Applications, 2019,55(4):219-224. ] [ Huang Y L, Liu Y T, Ren H E. Segmentation of forest image based on Fully Convolutional Neural Network[J]. Computer Engineering and Applications, 2019,55(4):219-224. ]

    [27] [27] 王晨巍, 王晓君. 高分遥感卫星影像的预处理技术[J]. 电子技术与软件工程, 2016(24):122-123. [ WangC W, WangX J. Pre-process technology of high precision satellite photograph[J]. Electronic Technology & Software Engineering.2016(24):122-123. ] [ Wang C W, Wang X J. Pre-process technology of high precision satellite photograph[J]. Electronic Technology & Software Engineering. 2016(24):122-123. ]

    [28] [28] 张新明, 祝晓斌, 蔡强, 等. 图像语义分割深度学习模型综述[J]. 高技术通讯, 2017,27(Z1):808-815. [ ZhangX M, ZhuX B, CaiQ, et al. Survey of the deep learning models for image semantic segmentation[J]. Chinese High Technology Letters, 2017,27(Z1):808-815. ] [ Zhang X M, Zhu X B, Cai Q, et al. Survey of the deep learning models for image semantic segmentation[J]. Chinese High Technology Letters, 2017,27(Z1):808-815. ]

    Tools

    Get Citation

    Copy Citation Text

    Hongshu HE, Xiaoxia HUANG, Hongga LI, Lingjia NI, Xinge WANG, Chong CHEN, Ze LIU. Water Body Extraction of High Resolution Remote Sensing Image based on Improved U-Net Network[J]. Journal of Geo-information Science, 2020, 22(10): 2010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 24, 2019

    Accepted: --

    Published Online: Apr. 23, 2021

    The Author Email: HUANG Xiaoxia (huangxx@aircas.ac.cn)

    DOI:10.12082/dqxxkx.2020.190622

    Topics