Journal of Electronic Science and Technology, Volume. 22, Issue 2, 100250(2024)

Data augmentation method for insulators based on Cycle-GAN

Run Ye1...3,*, Azzedine Boukerche2, Xiao-Song Yu1, Cheng Zhang3, Bin Yan1,3, and Xiao-Jia Zhou13 |Show fewer author(s)
Author Affiliations
  • 1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • 2School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, K1N6N5, Canada
  • 3Yangtze River Delta Research Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
  • show less
    References(19)

    [1] [1] Y. Tokozume, Y. Ushiku, T. Harada, Learning from betweenclass examples f deep sound recognition, in: Proc. of the 6th Intl. Conf. on Learning Representations, Vancouver, Canada, 2018, pp. 1–13.

    [2] [2] R. Takahashi, T. Matsubara, K. Uehara, RICAP: Rom image cropping patching data augmentation f deep CNNs, in: Proc. of the 10th Asian Conf. on Machine Learning, Beijing, China, 2018, pp. 786–798.

    [3] [3] I.J. Goodfellow, J. PougetAbadie, M. Mirza, et al., Generative adversarial s, in: Proc. of the 27th Intl. Conf. on Neural Infmation Processing Systems, Montreal, Canada, 2014, pp. 2672–2680.

    [4] [4] A. Antoniou, A. Stkey, H. Edwards, Data augmentation generative adversarial wks [Online]. Available, https:arxiv.gabs1711.04340, November 2017.

    [6] [6] A. Radfd, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial wks, in: Proc. of the 4th Intl. Conf. on Learning Representations, San Juan, America, 2016, pp. 1–15.

    [7] [7] M. FridAdar, E. Klang, M. Amitai, J. Goldberger, H. Greenspan, Synthetic data augmentation using GAN f improved liver lesion classification, in: Proc. of the 15th IEEE Intl. Symposium on Biomedical Imaging, Washington, America, 2018, pp. 289–293.

    [8] [8] C. Han, K. Murao, T. Noguchi, et al., Learning me with less: Conditional PGGANbased data augmentation f brain metastases detection using highlyrough annotation on MR images, in: Proc. of the 28th ACM International Conference on Infmation Knowledge Management (CIKM ''19). Association f Computing Machinery, Beijing, China, 2019, pp. 119–127.

    [9] [9] J. Redmon, A. Farhadi, YOLOv3: An incremental improvement [Online]. Available, https:arxiv.gabs1804.02767, April 2018.

    [10] [10] X.Y. Zhu, Y.F. Liu, J.H. Li, T. Wan, Z.C. Qin, Emotion classification with data augmentation using generative adversarial wk, in: Proc. of the 22nd PacificAsia Conf. on Knowledge Discovery Data Mining, Melbourne, Australia, 2018, pp. 349–360.

    [11] [11] J.Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired imagetoimage translation using cycleconsistent adversarial wks, in: Proc. of IEEE Intl. Conf. on Computer Vision, Venice, Italy, 2017, pp. 2242–2251.

    [12] [12] T. Kim, M. Cha, H. Kim, J.K. Lee, J. Kim, Learning to discover crossdomain relations with generative adversarial wks, in: Proc. of the 34th Intl. Conf. on Machine Learning, Sydney, Australia, 2017, pp. 1857–1865.

    [13] [13] Z.L. Yi, H. Zhang, P. Tan, M.L. Gong, DualGAN: Unsupervised dual learning f imagetoimage translation, in: Proc. of IEEE Intl. Conf. on Computer Vision, Venice, Italy, 2017, pp. 2868–2876.

    [15] [15] Z. Liang, J.X. Huang, CycleGAN with dynamic criterion f malaria blood cell image synthetization, in: Proc. of AMIA Jt Summits Transl Sci Proc, Online, 2022, pp. 323–330.

    [16] [16] S. Benaim, L. Wolf, Onesided unsupervised domain mapping, in: Proc. of the 31st Intl. Conf. on Neural Infmation Processing Systems, Long Beach, America, 2017, pp. 752–762.

    [17] [17] B. Liu, J. Lv, X. Fan, et al., Application of an improved DCGAN f image generation, Mobile Infmation Systems 2022 (July 2022) 1–14.

    [18] [18] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial wks, in: Proc. of the 34th Intl. Conf. on Machine Learning, Sydney, Australia, 2017, pp. 214–223.

    [19] [19] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein GANs, in: Proc. of the 31st Intl. Conf. on Neural Infmation Processing Systems, Long Beach, America, 2017, pp. 5769–5779.

    Tools

    Get Citation

    Copy Citation Text

    Run Ye, Azzedine Boukerche, Xiao-Song Yu, Cheng Zhang, Bin Yan, Xiao-Jia Zhou. Data augmentation method for insulators based on Cycle-GAN[J]. Journal of Electronic Science and Technology, 2024, 22(2): 100250

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 13, 2023

    Accepted: Apr. 9, 2024

    Published Online: Aug. 8, 2024

    The Author Email: Ye Run (rye@uestc.edu.cn)

    DOI:10.1016/j.jnlest.2024.100250

    Topics