Optics and Precision Engineering, Volume. 32, Issue 10, 1538(2024)

Cross-level feature aggregation image enhancement with dual-path hybrid attention

Heng YUAN1... Xiaoxue WANG1,*, Tinghao YAN1 and Shengchong ZHANG2 |Show fewer author(s)
Author Affiliations
  • 1College of Software, Liaoning Technical University, Huludao2505, China
  • 2Key Laboratory of Optoelectronic Information Control and Security Technology, Tianjin300308, China
  • show less
    References(29)

    [1] E D PISANO, S Q ZONG, B M HEMMINGER et al. Contrast Limited Adaptive Histogram Equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital Imaging, 11, 193(1998).

    [2] H IBRAHIM, N S P KONG. Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53, 1752-1758(2007).

    [3] K ZUIDERVELD. Contrast Limited Adaptive Histogram Equalization. Graphics Gems, 474-485(1994).

    [4] E H LAND, J J MCCANN. Lightness and retinex theory. Journal of the Optical Society of America, 61, 1-11(1971).

    [5] X J GUO, Y LI, H B LING. LIME: low-light image enhancement via illumination map estimation. IEEE Transactions on Image Processing, 26, 982-993(2017).

    [6] Q ZHANG, Y W NIE, L ZHU et al. Enhancing underexposed photos using perceptually bidirectional similarity. IEEE Transactions on Multimedia, 23, 189-202(2045).

    [7] M D LI, J Y LIU, W H YANG et al. Structure-revealing low-light image enhancement via robust retinex model. IEEE Transactions on Image Processing, 27, 2828-2841(2018).

    [8] Z Q YING, G LI, W GAO. A bio-inspired multi-exposure fusion framework for low-light image enhancement. ArXiv e-Prints(2017).

    [9] K G LORE, A AKINTAYO, S SARKAR. LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recognition, 61, 650-662(2017).

    [11] Y H ZHANG, J W ZHANG, X J GUO. Kindling the darkness: a practical low-light image enhancer, 1632-1640(2019).

    [12] W H WU, J WENG, P P ZHANG et al. URetinex-Net: retinex-based deep unfolding network for low-light image enhancement, 5891-5900(2022).

    [13] [13] 王殿伟, 邢质斌, 韩鹏飞, 等. 基于模拟多曝光融合的低照度全景图像增强[J]. 光学 精密工程, 2021, 29(2): 349-362. doi: 10.37188/OPE.20212902.0349WANGD W, XINGZ B, HANP F, et al. Low illumination panoramic image enhancement algorithm based on simulated multi-exposure fusion[J]. Opt. Precision Eng., 2021, 29(2): 349-362.(in Chinese). doi: 10.37188/OPE.20212902.0349

    [14] W KIM. DSLR: deep stacked Laplacian restorer for low-light image enhancement. IEEE Transactions on Multimedia, 23, 4272-4284(2021).

    [15] Z D WANG, X D CUN, J M BAO et al. Uformer: a general u-shaped transformer for image restoration, 17662-17672(2022).

    [16] L LI, D LIANG, Y GAO et al. ALL-E: Aesthetics-Guided Low-Light Image Enhancement. ArXiv preprint(2023).

    [17] J X QU, R W LIU, Y GAO et al. Double domain guided real-time low-light image enhancement for ultra-high-definition transportation surveillance. IEEE Transactions on Intelligent Transportation Systems, 1-13(2024).

    [18] [18] 刘光辉, 杨琦, 孟月波, 等. 一种并行混合注意力的渐进融合图像增强方法[J]. 光电工程, 2023, 50(4): 220231.LIUG H, YANGQ, MENGY B, et al. A progressive fusion image enhancement method with parallel hybrid attention[J]. Opto-Electronic Engineering, 2023, 50(4): 220231.(in Chinese)

    [19] [19] 陈清江, 顾媛. 多通道融合注意力网络的低照度图像增强[J]. 光学 精密工程, 2023, 31(14): 2111-2122. doi: 10.37188/OPE.20233114.2111CHENQ J, GUY. Low-light image enhancement algorithm based on multi-channel fusion attention network[J]. Opt. Precision Eng., 2023, 31(14): 2111-2122.(in Chinese). doi: 10.37188/OPE.20233114.2111

    [20] Y F JIANG, X Y GONG, D LIU et al. EnlightenGAN: deep light enhancement without paired supervision. IEEE Transactions on Image Processing, 30, 2340-2349(2021).

    [21] C L GUO, C Y LI, J C GUO et al. Zero-reference deep curve estimation for low-light image enhancement, 1777-1786(2020).

    [22] C Y LI, C L GUO, C C LOY. Learning to enhance low-light image via zero-reference deep curve estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 4225-4238(2022).

    [23] R S LIU, L MA, J A ZHANG et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement, 10556-10565(2021).

    [24] L MA, T Y MA, R S LIU et al. Toward fast, flexible, and robust low-light image enhancement, 5627-5636(2022).

    [25] X H DING, X Y ZHANG, J G HAN et al. Scaling up Your Kernels to 31 × 31: Revisiting large kernel design in CNNs, 11953-11965(2022).

    [27] V BYCHKOVSKY, S PARIS, E CHAN et al. Learning photographic global tonal adjustment with a database of input/output image pairs, 97-104(2011).

    [28] R ZHANG, P ISOLA, A A EFROS et al. The unreasonable effectiveness of deep features as a perceptual metric, 586-595(2018).

    [29] A MITTAL, R SOUNDARARAJAN, A C BOVIK. Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, 20, 209-212(2013).

    Tools

    Get Citation

    Copy Citation Text

    Heng YUAN, Xiaoxue WANG, Tinghao YAN, Shengchong ZHANG. Cross-level feature aggregation image enhancement with dual-path hybrid attention[J]. Optics and Precision Engineering, 2024, 32(10): 1538

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 21, 2023

    Accepted: --

    Published Online: Jul. 8, 2024

    The Author Email: WANG Xiaoxue (wxx2585354184@163.com)

    DOI:10.37188/OPE.20243210.1538

    Topics