Journal of the Chinese Ceramic Society, Volume. 50, Issue 2, 522(2022)
Effect of Pretreatment Method of Natural Plant Fibers on Properties of Cement-Based Materials-A Short Review
[2] [2] ROUT J, MISRA M, TRIPATHY S S, et al. The influence of fibre treatment on the performance of coir-polyester composites[J]. Compos Sci Technol, 2001, 61(9): 1303-1310.
[4] [4] PICKERING K L, EFENDY M G A, LE T M. A review of recent developments in natural fibre composites and their mechanical performance[J]. Composites Part A: Appl Sci Manuf, 2016, 83: 98-112.
[6] [6] VAN DE VELDE K, KIEKENS P. Thermal degradation of flax: The determination of kinetic parameters with thermogravimetric analysis [J]. J Appl Polym Sci, 2002, 83(12): 2634-2643.
[7] [7] FREDERICK T W, NORMAN W. Natural fibers, plastics and composites[M]. Boston: Springer Science & Business Media, 2004: 3-7.
[9] [9] BLEDZKI A K, GASSAN J. Composites reinforced with cellulose based fibres[J]. Progr Polym Sci, 1999, 24(2): 221-274.
[10] [10] PAUL A, JOSEPH K, THOMAS S. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers[J]. Compos Sci Technol, 1997, 57(1): 67-79.
[11] [11] ROUISON D, SAIN M, COUTURIER M. Resin transfer molding of natural fiber reinforced composites: cure simulation[J]. Compos Sci Technol, 2004, 64(5): 629-644.
[12] [12] FARUK O, BLEDZKI A K, FINK H P, et al. Biocomposites reinforced with natural fibers: 2000-2010[J]. Progress Polym Sci, 2012, 37(11): 1552-1596.
[13] [13] MOHANTY A K, MISRA M, DRZAL L T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview[J]. Compos Interfaces, 2001, 8(5): 313-343.
[14] [14] ROWELL R M, ROWELL J. Paper and composites from agro-based resources [M]. Florida: CRC Press, 1996: 63-78.
[15] [15] LI X, TABIL L G, PANIGRAHI S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review[J]. J Polym Environ, 2007, 15(1): 25-33.
[16] [16] GANSTER J, FINK H P. Novel cellulose fibre reinforced thermoplastic materials[J]. Cellulose, 2006, 13(3): 271-280.
[17] [17] SCALICI T, PITARRESI G, BADAGLIACCO D, et al. Mechanical properties of basalt fiber reinforced composites manufactured with different vacuum assisted impregnation techniques[J]. Composites Part B: Eng, 2016, 104: 35-43.
[19] [19] ALI A, SHAKER K, NAWAB Y, et al. Hydrophobic treatment of natural fibers and their composites-A review[J]. J Ind Text, 2018, 47(8): 2153-2183.
[21] [21] ROWELL R M, HAN J S, ROWELL J S. Characterization and factors effecting fiber properties[J]. Nat Polym Agrofibers Based Compos, 2000: 115-34.
[22] [22] SORIEUL M, DICKSON A, HILL S J, et al. Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite[J]. Materials, 2016, 9(8): 618.
[24] [24] FUQUA M A, HUO S, ULVEN C A. Natural fiber reinforced composites[J]. Polym Rev, 2012, 52(3): 259-320.
[25] [25] MUKESH, GODARA S S. Effect of chemical modification of fiber surface on natural fiber composites: A review[J]. Mater Today: Proc, 2019, 18: 3428-3434.
[27] [27] WANG S, RU B, DAI G, et al. Mechanism study on the pyrolysis of a synthetic β-O-4 dimer as lignin model compound[J]. Proc Combust Inst, 2017, 36(2): 2225-2233.
[28] [28] DAI G, WANG K, WANG G, et al. Initial pyrolysis mechanism of cellulose revealed by in-situ DRIFT analysis and theoretical calculation[J]. Combust Flame, 2019, 208: 273-280.
[29] [29] MA Z, WANG J, ZHOU H, et al. Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities[J]. Fuel Proc Technol, 2018, 181: 142-156.
[33] [33] TONOLI G H D, BELGACEM M N, SIQUEIRA G, et al. Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres[J]. Cem Concr Compos, 2013, 37: 68-75.
[34] [34] TOLEDO F R D, GHAVAMI K, SANJUN M A, et al. Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres[J]. Cem Concr Compos, 2005, 27(5): 537-546.
[35] [35] ABIOLA O S. Natural Fibre Cement Composites[M]. London: Woodhead Publishing, 2017: 205-214.
[36] [36] SELLAMI A, MERZOUD M, AMZIANE S. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers[J]. Constr Build Mater, 2013, 47: 1117-1124.
[37] [37] PICKERING K L, EFENDY M G A, LE T M. A review of recent developments in natural fibre composites and their mechanical performance[J]. Composites Part A: Appl Sci Manuf, 2016, 83: 98-112.
[39] [39] SEDAN D, PAGNOUX C, CHOTARD T, et al. Effect of calcium rich and alkaline solutions on the chemical behaviour of hemp fibres[J]. J Mater Sci, 2007, 42(22): 9336-9342.
[40] [40] FRYBORT S, MAURITZ R, TEISCHINGER A, et al. Cement bonded composites-A mechanical review[J]. BioResources, 2008, 3(2): 602-626.
[41] [41] WEI Y M, TOMITA B. Effects of five additive materials on mechanical and dimensional properties of wood cement-bonded boards [J]. J Wood Sci, 2001, 47(6): 437-444.
[42] [42] RONG M Z, ZHANG M Q, LIU Y, et al. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites[J]. Compos Sci Technol, 2001, 61(10): 1437-1447.
[43] [43] LE DUIGOU A, BOURMAUD A, BALNOIS E, et al. Improving the interfacial properties between flax fibres and PLLA by a water fibre treatment and drying cycle[J]. Ind Crop Prod, 2012, 39: 31-39.
[44] [44] DING X Y, TIAN G Y, GE A M. Comparative study on properties of different straw fiber cement composites [A] //The 3rd International Conference on New Material and Chemical Industry[C], Sanya, China, 2019: 479.
[45] [45] BEDERINA M, BELHADJ B, AMMARI M S, et al. Improvement of the properties of a sand concrete containing barley straws-Treatment of the barley straws[J]. Constr Build Mater, 2016, 115: 464-477.
[46] [46] AMIANDAMHEN S O, IZEKOR D N, BALOGUM A O. Performance characteristics of treated kenaf bast fibre reinforced cement composite[J]. J Indian Acad Wood Sci, 2016, 13(2): 156-160.
[47] [47] SAWSEN C, FOUZIA K, MOHAMED B, et al. Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite[J]. Constr Build Mater, 2015, 79: 229-235.
[48] [48] RABMA S, NARKSITIPAN S, JAITANONG N. Coconut fiber reinforced cement-based composites[J]. Solid State Phenom, 2020, 302: 101-106.
[49] [49] ASASUTJARIT C, HIRUNLABH J, KHEDARI J, et al. Development of coconut coir-based lightweight cement board[J]. Constr Build Mater, 2007, 21(2): 277-288.
[50] [50] PAGE J, KHADRAOUI F, GOMINA M, et al. Influence of different surface treatments on the water absorption capacity of flax fibres: Rheology of fresh reinforced-mortars and mechanical properties in the hardened state[J]. Constr Build Mater, 2019, 199: 424-434.
[51] [51] TOLEDO FILHO R D, de ANDRADE SILVA F, FAIRBAIRN E M R, et al. Durability of compression molded sisal fiber reinforced mortar laminates[J]. Constr build Mater, 2009, 23(6): 2409-2420.
[52] [52] LING T C, POON C S. Feasible use of large volumes of GGBS in 100% recycled glass architectural mortar[J]. Cem Concr Compos, 2014, 53: 350-356.
[53] [53] TOLEDO FILHO R D, SCRIVENER K, ENGLAND G L, et al. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites[J]. Cem Concr Compos, 2000, 22(2): 127-143.
[54] [54] SAWSEN C, GOMINA M, KHADRAOUI F, et al. Dependence of the properties of cementitious composites on the nature of the hydraulic binder coating the reinforcing flax fibers[J]. J Mech Civ Eng, 2017, 14(6): 27-33.
[55] [55] KHAZMA M, GOULLIEUX A, QUENEUDEC M. Valorisation d’Anas de lin dans des composites cimentaires: étude comparative de l’impact des différents traitements sur les performances de la fraction végétale et des composites [A] //Congrès International Francophone NoMaD[C], Toulouse, France, 2012.
[56] [56] SEDAN D, PAGNOUX C, SMITH A, et al. Propriétés mécaniques de matériaux enchevêtrés à base de fibre de chanvre et matrice cimentaire [A] //18éme Congrès franais de mécanique[C]. Grenoble, France, 2007: 27-31.
[57] [57] SELLAMI A, MERZOUD M, AMZIANE S. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers[J]. Constr Build Mater, 2013, 47: 1117-1124.
[58] [58] NOZAHIC V, AMZIANE S. Influence of sunflower aggregates surface treatments on physical properties and adhesion with a mineral binder [J]. Composites Part A: Appl Sci Manuf, 2012, 43(11): 1837-1849.
[59] [59] MONREAL P, MBOUMBA-MAMBOUNDOU L B, DHEILLY R M, et al. Effects of aggregate coating on the hygral properties of lignocellulosic composites[J]. Cem Concr Compos, 2011, 33(2): 301-308.
[60] [60] BASTA A H, SAFAIN M Z, El-REWAINY I. Role of some treatments on enhancing the eco-friendly utilization of lignocellulosic wastes in production of cement-fiber bricks[J]. BioResources, 2011, 6(2): 1359-1375.
[61] [61] JIANG D, AN P, CUI S, et al. Effect of leaf fiber modification methods on mechanical and heat-insulating properties of leaf fiber cement-based composite materials[J]. J Build Eng, 2018, 19: 573-583.
[64] [64] AHMAD H, FAN M, et al. Interfacial properties and structural performance of resin-coated natural fibre rebars within cementitious matrices[J]. Cem Concr Compos, 2018, 87: 44-52.
[66] [66] VELASQUEZ J A, FERRANDO F, FARRIOL X, et al. Binderless fiberboard from steam exploded Miscanthus sinensis[J]. Wood Sci Technol, 2003, 37(3): 269-278.
[67] [67] QUINTANA G, VELASQUEZ J, BETANCOURT S, et al. Binderless fiberboard from steam exploded banana bunch[J]. Ind Crop Prod, 2009, 29(1): 60-66.
[68] [68] XIE X, GOU G, WEI X, et al. Influence of pretreatment of rice straw on hydration of straw fiber filled cement based composites[J]. Constr Build Mater, 2016, 113: 449-455.
[69] [69] DAS S, SAHA A K, CHOUDHURY P K, et al. Effect of steam pretreatment of jute fiber on dimensional stability of jute composite[J]. J Appl Polym Sci, 2000, 76(11): 1652-1661.
[70] [70] SHAHIDI S, WIENER J, GHORANNEVISS M. Surface modification methods for improving the dyeability of textile fabrics[J]. Eco-Friendly Text Dyeing Finish, 2013, 10: 53911.
[72] [72] MACEDO M J P, SILVA G S, FEITOR M C, et al. Surface modification of kapok fibers by cold plasma surface treatment[J]. J Mater Res Technol, 2020, 9(2): 2467-2476.
[73] [73] BARRA B N, SANTOS S F, BERGO P V A, et al. Residual sisal fibers treated by methane cold plasma discharge for potential application in cement based material[J]. Ind Crops Prod, 2015, 77: 691-702.
[74] [74] BLEDZKI A K, REIHMANE S, GASSAN J. Properties and modification methods for vegetable fibers for natural fiber composites [J]. J Appl Polym Sci, 1996, 59(8): 1329-1336.
[75] [75] MOHANTY A K, MISRA M, DRZAL L T. Surface modifications of natural fibers and performance of the resulting biocomposites: an overview[J]. Compos Interfaces, 2001, 8(5): 313-343.
[76] [76] AGRAWAL R, SAXENA N S, SREEKALA M S, et al. Effect of treatment on the thermal conductivity and thermal diffusivity of oil-palm-fiber-reinforced phenolformaldehyde composites[J]. J Polym Sci Part B: Polym Phys, 2000, 38(7): 916-921.
[77] [77] AZEVEDO A R G, MARVILA M T, TAYEH B A, et al. Technological performance of aaí natural fibre reinforced cement- based mortars[J]. J Build Eng, 2021, 33: 101675.
[78] [78] LE TROEDEC M, DALMAY P, PATAPY C, et al. Mechanical properties of hemp-lime reinforced mortars: influence of the chemical treatment of fibers[J]. J Compos Mater, 2011, 45(22): 2347-2357.
[79] [79] BONNET-MASIMBERT P A, GAUVIN F, BROUWERS H J H, et al. Study of modifications on the chemical and mechanical compatibility between cement matrix and oil palm fibres[J]. Results Eng, 2020, 7: 100150.
[80] [80] PASCA S A, HARTLEY I D, REID M E, et al. Evaluation of Compatibility between Beetle-Killed Lodgepole Pine (Pinus Contorta var. Latifolia) wood with Portland Cement[J]. Materials, 2010, 3(12): 5311-5319.
[81] [81] REIS J M L. Sisal fiber polymer mortar composites: Introductory fracture mechanics approach[J]. Constr Build Mater, 2012, 37: 177-180.
[82] [82] FIORE V, BELLA G D, VALENZA A. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites[J]. Composites Part B: Eng, 2015, 68: 14-21.
[83] [83] SYMINGTON M C, DAVID-WEST O S, BANKS W M, et al. The effect of alkalisation on the mechanical properties of natural fibres [A]// 13th European Conference on Composite Materials[C]. Stockholm, Sweden, 2008.
[84] [84] OZERKAN N G, AHSAN B, MANSOUR S, et al. Mechanical performance and durability of treated palm fiber reinforced mortars[J]. Int J Sustain Build Environ, 2013, 2(2): 131-142.
[85] [85] WEI J, MEYER C. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment[J]. Appl Surf Sci, 2014, 289: 511-523.
[86] [86] AGRAWAL R, SAXENA N S, SHARMA K B, et al. Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites[J]. Mater Sci Eng: A, 2000, 277(1-2): 77-82.
[87] [87] YU T, REN J, LI S, et al. Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites[J]. Composites Part A: Appl Sci Manuf, 2010, 41(4): 499-505.
[88] [88] VALADEZ-GONZALEZ A, CERVANTES-UC J M, OLAYO R, et al. Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites[J]. Composites Part B: Eng, 1999, 30(3): 309-320.
[89] [89] FUQUA M A, HUO S, ULVEN C A. Natural fiber reinforced composites[J]. Polym Rev, 2012, 52(3): 259-320.
[90] [90] BLANKENHORN P R, BLANKENHORN B D, SILSBEE M R, et al. Effects of fiber surface treatments on mechanical properties of wood fiber-cement composites[J]. Cem Concr Res, 2001, 31(7): 1049-1055.
[93] [93] BILBA K, ARSENE M A. Silane treatment of bagasse fiber for reinforcement of cementitious composites[J]. Composites Part A: Appl Sci Manuf, 2008, 39(9): 1488-1495.
[94] [94] AKINYEMI A B, OMONIYI E T, ONUZULIKE G. Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites[J]. Constr Build Mater, 2020, 245: 118405.
[95] [95] GHAFFAR S H, FAN M. Differential behaviour of nodes and internodes of wheat straw with various pre-treatments[J]. Biomass Bioenerg, 2015, 83: 373-382.
Get Citation
Copy Citation Text
YANG Zhengxian, LI Kang, ZHANG Yong, WANG Yan, NIU Ditao. Effect of Pretreatment Method of Natural Plant Fibers on Properties of Cement-Based Materials-A Short Review[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 522
Category:
Received: Apr. 21, 2021
Accepted: --
Published Online: Nov. 23, 2022
The Author Email: Zhengxian YANG (zxyang@fzu.edu.cn)
CSTR:32186.14.