Journal of Natural Resources, Volume. 35, Issue 4, 963(2020)
Detection of the construction land change in fine spatial resolution remote sensing imagery coupling spatial autocorrelation
[1] GONG J Z, HU Y G, WEN Y et al. Simulation and analysis of urban land expansion conducted by ecological security[D]. Geographical Research, 36, 518-528(2017).
[2] TOBLER W R. A computer movie simulating urban growth in the Detroit region[D]. Economic Geography, 46, 234-240(1970).
[3] XU J G, YIN H W, ZHONG G F et al. Study on African economy structure based on spatial autocorrelation[D]. Economic Geography, 26, 771-775(2006).
[4] SHI W., WANG Y, ZHAO J. Using local Moran's I statistics to estimate spatial autocorrelation of urban economic growth in Shandong province, China, 32-39(2017).
[6] GHIMIRE B, MILLER J, ROGAN J. Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic[D]. Remote Sensing Letters, 1, 45-54(2010).
[7] ANSELIN L. Local indicators of spatial association-LISA[D]. Geographical Analysis, 27, 93-115(1995).
[8] GETIS A, ORD J K. The analysis of spatial association by use of distance statistics[D]. Geographical Analysis, 24, 189-206(1992).
[9] JIAO L, XU G, ZHANG B et al. The scale effects of the spatial autocorrelation measurement: Aggregation level and spatial resolution[D]. International Journal of Geographical Information Science, 3, 945-966(2019).
[10] FAN C, MYINT S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation[D]. Landscape & Urban Planning, 121, 117-128(2014).
[11] HAASE D, KNAPP S, WELLMANN T et al. Urban land use intensity assessment: The potential of spatial-temporal spectral traits with remote sensing[D]. Ecological Indicators, 85, 190-203(2018).
[12] GIBRIL M B A, IDREES M O, YAO K et al. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data[D]. Journal of Applied Remote Sensing, 12, 016036(2018).
[13] DHIAF Z B, HAOUAS F, SOLAIMAN B.. Fusion of spatial autocorrelation and spectral data for remote sensing image classification, 537-542(2016).
[15] LAM S N, READ J M. Spatial methods for characterising land cover and detecting land-cover changes for the tropics[D]. International Journal of Remote Sensing, 23, 2457-2474(2002).
[16] MONDINI A. Measures of spatial autocorrelation changes in multitemporal SAR images for event landslides detection[D]. Remote Sensing, 9, 554(2017).
[17] FRY J, HOMER C, XIAN G. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods[D]. Remote Sensing of Environment, 113, 1133-1147(2009).
[18] Notes on continuous stochastic phenomena[D]. Biometrika, 37, 17-23(1950).
[19] GEARY R C. The contiguity ratio and statistical mapping[D]. Incorporated Stat, 5, 129-146(1954).
[21] CARR J R, DE MIRANDA F P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture[D]. IEEE Transactions on Geoscience and Remote Sensing, 36, 1945-1952(1998).
[22] BREIMAN L. Random forests[D]. Machine Learning, 45, 5-32(2001).
[23] GHIMIRE B, RODRIGUEZ G V F, ROGAN J et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[D]. ISPRS Journal of Photogrammetry & Remote Sensing, 67, 93-104(2012).
Get Citation
Copy Citation Text
Tao ZHANG, Hong FANG, Yu-chun WEI, Qi HU, Han-ze-yu XU. Detection of the construction land change in fine spatial resolution remote sensing imagery coupling spatial autocorrelation[J]. Journal of Natural Resources, 2020, 35(4): 963
Category:
Received: Feb. 27, 2019
Accepted: --
Published Online: Oct. 17, 2020
The Author Email: WEI Yu-chun (weiyuchun@njnu.edu.cn)