Journal of Natural Resources, Volume. 35, Issue 4, 963(2020)

Detection of the construction land change in fine spatial resolution remote sensing imagery coupling spatial autocorrelation

Tao ZHANG1... Hong FANG2, Yu-chun WEI2,3,4,*, Qi HU5 and Han-ze-yu XU2 |Show fewer author(s)
Author Affiliations
  • 1Nanjing Municipal Bureau of Planning and Natural Resources, Nanjing 210005, China
  • 2School of Geography, Nanjing Normal University, Nanjing 210023, China
  • 3Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
  • 4Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Provincial Key Laboratory of Geographical Environment Evolution, Nanjing 210023, China
  • 5Nnajing Underground Pipeline Data-managing Center, Nanjing 210029, China
  • show less
    References(20)

    [1] GONG J Z, HU Y G, WEN Y et al. Simulation and analysis of urban land expansion conducted by ecological security[D]. Geographical Research, 36, 518-528(2017).

    [2] TOBLER W R. A computer movie simulating urban growth in the Detroit region[D]. Economic Geography, 46, 234-240(1970).

    [3] XU J G, YIN H W, ZHONG G F et al. Study on African economy structure based on spatial autocorrelation[D]. Economic Geography, 26, 771-775(2006).

    [4] SHI W., WANG Y, ZHAO J. Using local Moran's I statistics to estimate spatial autocorrelation of urban economic growth in Shandong province, China, 32-39(2017).

    [6] GHIMIRE B, MILLER J, ROGAN J. Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic[D]. Remote Sensing Letters, 1, 45-54(2010).

    [7] ANSELIN L. Local indicators of spatial association-LISA[D]. Geographical Analysis, 27, 93-115(1995).

    [8] GETIS A, ORD J K. The analysis of spatial association by use of distance statistics[D]. Geographical Analysis, 24, 189-206(1992).

    [9] JIAO L, XU G, ZHANG B et al. The scale effects of the spatial autocorrelation measurement: Aggregation level and spatial resolution[D]. International Journal of Geographical Information Science, 3, 945-966(2019).

    [10] FAN C, MYINT S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation[D]. Landscape & Urban Planning, 121, 117-128(2014).

    [11] HAASE D, KNAPP S, WELLMANN T et al. Urban land use intensity assessment: The potential of spatial-temporal spectral traits with remote sensing[D]. Ecological Indicators, 85, 190-203(2018).

    [12] GIBRIL M B A, IDREES M O, YAO K et al. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data[D]. Journal of Applied Remote Sensing, 12, 016036(2018).

    [13] DHIAF Z B, HAOUAS F, SOLAIMAN B.. Fusion of spatial autocorrelation and spectral data for remote sensing image classification, 537-542(2016).

    [15] LAM S N, READ J M. Spatial methods for characterising land cover and detecting land-cover changes for the tropics[D]. International Journal of Remote Sensing, 23, 2457-2474(2002).

    [16] MONDINI A. Measures of spatial autocorrelation changes in multitemporal SAR images for event landslides detection[D]. Remote Sensing, 9, 554(2017).

    [17] FRY J, HOMER C, XIAN G. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods[D]. Remote Sensing of Environment, 113, 1133-1147(2009).

    [18] Notes on continuous stochastic phenomena[D]. Biometrika, 37, 17-23(1950).

    [19] GEARY R C. The contiguity ratio and statistical mapping[D]. Incorporated Stat, 5, 129-146(1954).

    [21] CARR J R, DE MIRANDA F P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture[D]. IEEE Transactions on Geoscience and Remote Sensing, 36, 1945-1952(1998).

    [22] BREIMAN L. Random forests[D]. Machine Learning, 45, 5-32(2001).

    [23] GHIMIRE B, RODRIGUEZ G V F, ROGAN J et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[D]. ISPRS Journal of Photogrammetry & Remote Sensing, 67, 93-104(2012).

    Tools

    Get Citation

    Copy Citation Text

    Tao ZHANG, Hong FANG, Yu-chun WEI, Qi HU, Han-ze-yu XU. Detection of the construction land change in fine spatial resolution remote sensing imagery coupling spatial autocorrelation[J]. Journal of Natural Resources, 2020, 35(4): 963

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 27, 2019

    Accepted: --

    Published Online: Oct. 17, 2020

    The Author Email: WEI Yu-chun (weiyuchun@njnu.edu.cn)

    DOI:10.31497/zrzyxb.20200417

    Topics