Journal of Synthetic Crystals, Volume. 49, Issue 1, 1(2020)
Synergy of Thermodynamics and Kinetics in Dendrite Growth Theory
[1] [1] Kurz W, Fisher D J. Fundametals of solidification[M].Zurich:Trans Tech Publications,1998.
[2] [2] Tiller W A, Jackson K A, Rutter J W, et al. The redistribution of solute atoms during the solidification of metals[J].Acta Metall,1(4):428-437.
[3] [3] Mullins W W, Sekerka R F. Stability of a planar interface during solidification of a dilute binary alloy[J].Journal of Applied Physics,1964,35(2):444-451.
[4] [4] Kurz W, Giovanola B, Trivedi R. Theory of microstructure development during rapid solidification[J].Acta Metall,1986,34:823-830.
[5] [5] Trivedi R, Kurz W. Morphological stability of a planar interface under rapid solidification conditions[J].Acta Metall,1986,34(8):1663-1670.
[6] [6] Lipton J, Glicksman M E, Kurz W. Dendritic growth into undercooled alloy melts[J].Materials Science and Engineering: A,1984,65:57-63.
[7] [7] Langer J S, Mülller-Krumbhaar H. Theory of dendrite growth-I. Elements of a stability analysis[J].Acta Metall,1978,26:1681-1687.
[8] [8] Boettingger W J, Coriell S R, Trivedi R. Application of dendritic growth theory to the interpretation of rapid solidification microstructures[J]. In:Mehrabian R, Parrish P A eds. Rapid Solidification Processing: Principles and Technologies Iv. Baton Rouge, La: Claitor'S Pulishing Division,1988:13-18.
[9] [9] Aziz M J, Kaplan T. Continuous growth model for interface motion during alloy solidification[J].Acta Metall,1988,36(8): 2335-2347.
[10] [10] Aziz M J, Boettinger W J. On the transition from short-range diffusion-limited to collision-limited groeth in alloy solidification [J].Acta Metall,1994,42(2):527-537.
[11] [11] Galenko P. Extended thermodynamical analysis of a motion of the solid-liquid interface in a rapidly solidifying alloy[J].Physical Review B,2002,65:144103.
[13] [13] Sobolev S L. Local-nonequilibrium effects in rapid solidification[J]. Phys Lett A,1995,199:383-386.
[14] [14] Wang H F, Liu F, Chen, Z, et al. Analysis of non-equilibrium dendrite growth in a bulk undercooled alloy melt: Model and application [J].Acta Materialia,2007,55(2):497-506.
[15] [15] Wang H F, Liu F, Yang W, et al. An extended morphological stability model for a planar interface incorporating the effect of nonlinear liquidus and solidus[J].Acta Materialia,2008,56(11):2592-2601.
[16] [16] Wang K, Wang H F, Liu F, et al. Modeling rapid solidification of multi-component concentrated alloys[J].Acta Materialia,2013,61(4):1359-1372.
[17] [17] Wang K, Wang H F, Liu F, et al. Modeling dendrite growth in undercooled concentrated multi-component alloys[J].Acta Materialia,2013,61 (11):4254-4265.
[18] [18] Wang H F, Liu F, Zhai H M, et al. Application of the maximal entropy production principle to rapid solidification: A sharp interface model[J].Acta Materialia,2012,60(4):1444-1454.
[19] [19] Wang K, Wang H F, Liu F, et al. Morphological stability analysis for planar interface during rapidly directional solidification of concentrated multi-component alloys[J].Acta Materialia,2014,67:220-231.
[20] [20] Zhang Y B, Du J L, Wang K, et al. Application of non-equilibrium dendrite growth model considering thermo-kinetic correlation in twin-roll casting[J].J.Mater.Sci.&Technol.,Online,https://doi.org/10.1016/j.jmst.2019.09.042.
[21] [21] Wang K, Liu Z K, Liu F, et al. Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study [J].Acta Materialia,2018,147:276-279.
[22] [22] Hong M, Wang K, Liu F, et al. A thermo-kinetic model for martensitic transformation kinetics in low-alloy steels[J].Journal of Alloys and Compounds,2015,647:763-767.
[23] [23] Lin B, Wang K, Liu F, et al. An intrinsic correlation between driving force and energy barrier upon grain boundary migration[J].Journal of Materials Science&Technology,2018,34:1359-1363.
[24] [24] Peng H R, Hang L K, Liu F. A thermo-kinetic correlation for grain growth in nanocrystalline alloys[J].Materials Letters,2018,219:276-279.
[25] [25] Coriell S R, Turnbull D. Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts[J].Acta Metall,1982,30:2135-2139.
[26] [26] Haga T, Tkahashi K, Ikawaand M, et al. Twin roll casting of aluminum alloy strips[J].Journal of Materials Processing Technology,2004,153: 42-47.
[27] [27] Yun M, Lokyer S, Hunt J D. Twin roll casting of aluminium alloys[J].Materials Science and Engineering: A,2000,280(1):116-123.
[28] [28] Shibuya K, Ozawa M. Comparison of continuous strip casting with conventional technology[J].ISIJ International,1991,31(7): 661-668.
[29] [29] Mathiesen R H, Arnberg L. X-ray radiography observations of columnar dendritic growth and constitutional undercooling in an Al-30wt%Cu alloy[J].Acta Mater,2005,53:947-956.
[30] [30] Wang Y B, Pen L M, Ji Y Z. Effect of cooling rates on the dendritic morphology transition of Mg-6Gd alloy by in situ X-ray radiography [J].Mater.Sci.Technol,2018,34:1142-1148.
[31] [31] Sturz L, Theofilatos A. Two-dimensional multi-scale dendrite needle network modeling and xray radiography of equiaxed alloy solidification in grain-refined Al-3.5wt-%Ni[J].Acta Mater,2016,117:356-370.
[32] [32] Trempa M, Reimann C, Friedrich J, et al. Mono-crystalline growth in directional solidification of silicon with different orientation and splitting of seed crystals[J].J.Cryst.Growth,2012,35:1131-140.
Get Citation
Copy Citation Text
WU Pan, ZHANG Yubing, HU Jiaqi, LIU Feng. Synergy of Thermodynamics and Kinetics in Dendrite Growth Theory[J]. Journal of Synthetic Crystals, 2020, 49(1): 1
Category:
Received: --
Accepted: --
Published Online: Jun. 15, 2020
The Author Email: Feng LIU (liufeng@nwpu.edu.cn)
CSTR:32186.14.