Electronics Optics & Control, Volume. 30, Issue 11, -1(2023)
Consistency Loss Between Classification and Localization Based on Cosine Similarity
[1] [1] DUAN K W, BAI S, XIE L X, et al.Centernet:keypoint triplets for object detection[C]//IEEE/CVF International Conference on Computer Vision(ICCV).Seoul:IEEE, 2019:6569-6578.
[2] [2] TIAN Z, SHEN C H, CHEN H, et al.FCOS:fully convolutional one-stage object detection[C]//IEEE/CVF International Conference on Computer Vision(ICCV).Seoul:IEEE, 2019:9626-9635.
[3] [3] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327.
[4] [4] ZHOU X Y, WANG D Q, KRHENBHL P.Objects as points[R].Los Alamos: arXiv Preprint, 2019:arXiv:1904.07850.
[5] [5] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision(ECCV).Cham:Springer, 2016:21-37.
[6] [6] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE, 2016:779-788.
[7] [7] LAW H, DENG J.CornerNet:detecting objects as paired keypoints[J].International Journal of Computer Vision, 2019, 128:642-656.
[8] [8] SERMANET P, EIGEN D, ZHANG X, et al.OverFeat:integrated recognition, localization and detection using convolutional networks[R].Los Alamos: arXiv Preprint, 2013:arXiv:1312.6229.
[9] [9] CAI Z W, VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City:IEEE, 2018:6154-6162.
[10] [10] GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision(ICCV).Santiago:IEEE, 2015:1440-1448.
[11] [11] REN S, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[12] [12] HE K M, GKIOXARI G, DOLLR P, et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice:IEEE, 2017:2961-2969.
[13] [13] SHEN Z Q, LIU Z, LI J G, et al.DSOD:learning deeply supervised object detectors from scratch[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice:IEEE, 2017:1919-1927.
[14] [14] DAI J F, LI Y, HE K M, et al.R-FCN:object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.Red Hook:Curran Associates Inc., 2016:379-387.
[15] [15] REDMON J, FARHADI A, IEEE.YOLO9000:better, faster, stronger[C]//The 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:IEEE, 2017:6517-6525.
[16] [16] KONG T, SUN F, LIU H, et al.FoveaBox:beyond anchor-based object detection[J].IEEE Transactions on Image Processing, 2020, 29:7389-7398.
[17] [17] JIANG B R, LUO R X, MAO J Y, et al.Acquisition of localization confidence for accurate object detection[C]//European Conference on Computer Vision(ECCV).Munich:Springer, 2018:816-832.
[18] [18] WU S K, LI X P, WANG X G.IoU-aware single-stage object detector for accurate localization[J].Image and Vision Computing, 2020, 97:103911.
[19] [19] KIM K, LEE H S.Probabilistic anchor assignment with IoU prediction for object detection[C]//European Conference on Computer Vision(ECCV).Glasgow:Springer, 2020:355-371.
[20] [20] REDMON J, FARHADI A.YOLOv3:an incremental improvement[R].Los Alamos: arXiv Preprint, 2018:arXiv:1804.02767.
[21] [21] LI C Y, LI L L, JIANG H L, et al.YOLOv6:a single-stage object detection framework for industrial applications[R].Los Alamos: arXiv Preprint, 2022:arXiv:2209.02976.
[22] [22] WANG C Y, BOCHKOVSKIY A, LIAO H Y M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[R].Los Alamos: arXiv Preprint, 2022:arXiv:2207.02696.
[25] [25] ZE Y, LIU S H, HU H, et al.RepPoints:point set representation for object detection[C]//IEEE/CVF International Conference on Computer Vision (ICCV) Proceedings.Seoul:IEEE, 2019:9656-9665.
[26] [26] LI X, LV C Q, WANG W H, et al.Generalized focal loss:towards efficient representation learning for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(3):3139-3153.
[27] [27] ZHANG H Y, WANG Y, DAYOUB F, et al.VarifocalNet:an IoU-aware dense object detector[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville:IEEE, 2021:8510-8519.
[28] [28] XU D L, GUAN J, FENG P M, et al.Association loss for visual object detection[J].IEEE Signal Processing Letters, 2020, 27:1435-1439.
[29] [29] KAHRAMAN F.Correlation loss:enforcing correlation between classification and localization in object detection[D].Ankara:Middle East Technical University, 2022.
[30] [30] YU J H, JIANG Y N, WANG Z Y, et al.Unitbox:an advanced object detection network [R].Los Alamos: arXiv Preprint, 2016:arXiv:1608.01471.
[31] [31] BLONDEL M, TEBOUL O, BERTHET Q, et al.Fast differentiable sorting and ranking[R].Los Alamos: arXiv Preprint, 2020:arXiv:2002.08871.
[32] [32] GOYAL P, DOLLáR P, GIRSHICK R, et al.Accurate, large minibatch SGD:training imagenet in 1 hour[R].Los Alamos: arXiv Preprint, 2017:arXiv:1706.02677.
Get Citation
Copy Citation Text
YE Yingjie, DOU Jie. Consistency Loss Between Classification and Localization Based on Cosine Similarity[J]. Electronics Optics & Control, 2023, 30(11): -1
Received: Nov. 2, 2022
Accepted: --
Published Online: Jan. 20, 2024
The Author Email: