Acta Photonica Sinica, Volume. 51, Issue 3, 0310006(2022)

Nonlinear Reconstruction for Target Density Based on Randomly Perturbed Optimization and Multi-models Fusion

Jinxin XU1...2, Qingwu LI2,*, Zhiqiang GUAN1 and Xiaolin WANG2 |Show fewer author(s)
Author Affiliations
  • 1Nanjing Marine Radar Institute,Nanjing 211106,China
  • 2College of Internet of Things Engineering,Hohai University,Changzhou ,Jiangsu 213002,China
  • show less
    Figures & Tables(12)
    First derivative products of different forward models
    ACF and IACT of sample estimation for each algorithm
    The RE of sample estimation and reconstructed time by each algorithm
    The RE involving multi-model fusion
    Reconstructed results of FTO transmission image with variable density (1.25% noise level)
    Reconstructed results of FTO transmission image with constant density (1.25% noise level)
    High energy flash X-ray static image under 4 MeV
    Results of density reconstruction (4 MeV static image)
    Comparison of reconstructed density profiles of each algorithm
    • Table 1. The PSNR and SSIM of reconstructed results of constant density FTO images

      View table
      View in Article

      Table 1. The PSNR and SSIM of reconstructed results of constant density FTO images

      SPA

      LRIS_

      Gamma

      LRIS_

      Jeffrey

      TLE_GibbsS_RTO

      Proposed

      (T_F)

      Proposed

      (I_nF)

      Proposed

      method

      0%

      18.074 4

      /0.665 4

      19.479 2

      /0.825 4

      19.448

      /0.826 2

      20.199 5

      /0.713 9

      24.504 1

      /0.897 0

      53.267 0

      /0.999 7

      19.099 8

      /0.899 6

      25.141 0

      /0.924 7

      0.25%

      17.913 7

      /0.619 8

      19.489 6

      /0.792 8

      19.461 2

      /0.794 9

      20.284 4

      /0.695 8

      23.414 6

      / 0.886 1

      28.116 1

      /0.882 6

      19.096 9

      /0.888 4

      25.150 9

      /0.918 2

      0.75%

      16.836

      /0.528

      19.573 6

      /0.705 8

      19.554 2

      /0.704 1

      20.719 5

      /0.644 4

      23.788 1

      /0.802 2

      25.632 1

      /0.827 2

      19.030 1

      /0.821 6

      25.181 7

      /0.880 3

      1.25%

      14.583

      /0.457 9

      19.869 8

      /0.661 6

      19.850 5

      /0.660 4

      20.864 7

      /0.603 7

      22.913 6

      /0.738 3

      24.590 6

      /0.744 6

      18.870 6

      /0.750 5

      24.743 3

      /0.840 2

    • Table 2. The PSNR and SSIM of reconstructed results of variable density FTO images

      View table
      View in Article

      Table 2. The PSNR and SSIM of reconstructed results of variable density FTO images

      SPA

      LRIS_

      Gamma

      LRIS_

      Jeffrey

      TLE_GibbsS_RTO

      Proposed

      (T_F)

      Proposed

      (I_nF)

      Proposed

      method

      0%

      19.126 7

      /0.826 5

      19.865 2

      /0.911 1

      19.833 2

      /0.910 9

      21.047 1

      /0.928 9

      26.663 7

      /0.939 6

      54.532 1

      /0.999 7

      19.661 9

      /0.950 2

      27.650 7

      /0.960 0

      0.25%

      19.037 2

      /0.787 8

      19.896 5

      /0.895

      19.845

      /0.894 6

      21.066 1

      /0.799 1

      26.714 4

      /0.927 4

      28.890 6

      /0.933 7

      19.666 7

      /0.939 5

      27.578 5

      /0.953 8

      0.75%

      18.306 9

      /0.615 2

      19.892 9

      /0.811 9

      19.835 7

      /0.807 6

      20.923 9

      /0.719 3

      25.816 5

      /0.882 4

      27.499 7

      /0.897 0

      19.587 8

      /0.872 8

      27.883 8

      /0.934 6

      1.25%

      17.001 4

      /0.469 9

      20.048

      /0.744 1

      20.012 8

      /0.741 6

      21.449 4

      /0.676 6

      25.270 6

      /0.826 1

      26.624 8

      0.864 0

      19.567 5

      /0.784 4

      27.579 1

      /0.903 6

    • Table 3. Average value (g/cm3)and relative error (%)of density reconstruction of each algorithm

      View table
      View in Article

      Table 3. Average value (g/cm3)and relative error (%)of density reconstruction of each algorithm

      GPSRLRIS_JeffreyLRIS_GammaSPATLE_GibbsProposed method
      CO17.592 6/5.692 17.593 0/5.032 67.594 7/5.065 67.571 3/5.327 77.567 4/5.268 17.391 7/2.520 7
      CO27.335 3/4.737 47.398 4/2.664 47.396 4/2.661 27.367 0/2.540 57.360 5/2.431 17.308 6/2.376 5
    Tools

    Get Citation

    Copy Citation Text

    Jinxin XU, Qingwu LI, Zhiqiang GUAN, Xiaolin WANG. Nonlinear Reconstruction for Target Density Based on Randomly Perturbed Optimization and Multi-models Fusion[J]. Acta Photonica Sinica, 2022, 51(3): 0310006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 11, 2021

    Accepted: Sep. 14, 2021

    Published Online: Apr. 8, 2022

    The Author Email: LI Qingwu (li_qingwu@163.com)

    DOI:10.3788/gzxb20225103.0310006

    Topics