Laser & Optoelectronics Progress, Volume. 54, Issue 4, 40005(2017)

Three-Dimensional Micro- and Nano-Machining Based on Spatiotemporal Focusing Technique of Femtosecond Laser

Jing Chenrui1,2、*, Wang Zhaohui2,3, and Cheng Ya2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(36)

    [1] [1] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature photonics, 2008, 2(4): 219-225.

    [2] [2] Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149.

    [3] [3] Osellame R, Hoekstra H J W M, Cerullo G, et al. Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips[J]. Laser & Photonics Reviews, 2011, 5(3): 442-463.

    [4] [4] Beresna M, Gecevicˇius M, Kazansky P G. Ultrafast laser direct writing and nanostructuring in transparent materials[J]. Advances in Optics and Photonics, 2014, 6(3): 293-339.

    [5] [5] Ams M, Marshall G D, Dekker P, et al. Ultrafast laser written active devices[J]. Laser & Photonics Reviews, 2009, 3(6): 535-544.

    [6] [6] Chen F, Aldana J R. Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining[J]. Laser & Photonics Reviews, 2014, 8(2): 251-275.

    [7] [7] Gong Min, Dai Ye, Song Juan, et al. Influence of electron density distribution induced by single beam femtosecond laser doubly-periodic nanogratings[J]. Acta Optica Sinica, 2016, 36(5): 0514001.

    [9] [9] Jia Yuechen, Chen Feng. Advances in dielectric crystal waveguides produced by direct femtosecond laser writing[J]. Laser & Optoelectronic Progress, 2016, 53(1): 010001.

    [10] [10] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729-1731.

    [11] [11] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

    [12] [12] Liao Y, Cheng Y, Liu C, et al. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration[J]. Lab on a Chip, 2013, 13(8): 1626-1631.

    [13] [13] Juodkazis S, Nishimura K, Tanaka S, et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 2006, 96(16): 166101.

    [14] [14] Osellame R, Taccheo S, Marangoni M, et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams[J]. Journal of the Optical Society of America B, 2003, 20(7): 1559-1567.

    [15] [15] Cheng Y, Sugioka K, Midorikawa K, et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 2003, 28(1): 55-57.

    [16] [16] Sugioka K, Cheng Y, Midorikawa K, et al. Femtosecond laser microprocessing with three-dimensionally isotropic spatial resolution using crossed-beam irradiation[J]. Optics Letters, 2006, 31(2): 208-210.

    [17] [17] He F, Xu H, Cheng Y, et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses[J]. Optics Letters, 2010, 35(7): 1106-1108.

    [18] [18] He F, Cheng Y, Lin J, et al. Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining[J]. New Journal of Physics, 2011, 13(8): 083014.

    [19] [19] Vitek D N, Adams D E, Johnson A, et al. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials[J]. Optics Express, 2010, 18(17): 18086-18094.

    [20] [20] Block E, Greco M, Vitek D, et al. Simultaneous spatial and temporal focusing for tissue ablation[J]. Biomedical Optics Express, 2013, 4(6): 831-841.

    [21] [21] Kammel R, Ackermann R, Thomas J, et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing[J]. Light: Science & Applications, 2014, 3(5): e169.

    [22] [22] Tangeysh B, Moore Tibbetts K, Odhner J H, et al. Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]-[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18719-18727.

    [23] [23] Vitek D N, Block E, Bellouard Y, et al. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials[J]. Optics Express, 2010, 18(24): 24673-24678.

    [24] [24] He F, Zeng B, Chu W, et al. Characterization and control of peak intensity distribution at the focus of a spatiotemporally focused femtosecond laser beam[J]. Optics Express, 2014, 22(8): 9734-9748.

    [25] [25] Li G, Ni J, Xie H, et al. Second harmonic generation in centrosymmetric gas with spatiotemporally focused intense femtosecond laser pulses[J]. Optics Letters, 2014, 39(4): 961-964.

    [26] [26] Zeng B, Chu W, Gao H, et al. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses[J]. Physical Review A, 2011, 84(6): 063819.

    [27] [27] Zeng B, Wang T J, Hosseini S, et al. Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses[J]. Journal of the Optical Society of America B, 2012, 29(12): 3226-3230.

    [28] [28] He F, Wang Z, Zeng B, et al. Extraordinary characteristics of spatiotemporally focused laser pulses and their roles in precision materials processing[C]. Conference on Lasers and Electro-Optics/Pacific Rim, Optical Society of America, 2015: 26B2_3.

    [29] [29] Durfee C G, Greco M, Block E, et al. Intuitive analysis of space-time focusing with double-ABCD calculation[J]. Optics Express, 2012, 20(13): 14244-14259.

    [30] [30] Wang Z, He F, Ni J, et al. Interferometric characterization of pulse front tilt of spatiotemporally focused femtosecond laser pulses[J]. Optics Express, 2014, 22(21): 26328-26337.

    [31] [31] Wang Z, Liao Y, Wang P, et al. Formation of in-volume nanogratings in glass induced by spatiotemporally focused femtosecond laser pulses[J]. Advanced Optical Technologies, 2016, 5(1): 81-85.

    [32] [32] Kazansky P G, Yang W, Bricchi E, et al. "Quill" writing with ultrashort light pulses in transparent materials[J]. Applied Physics Letters, 2007, 90(15): 151120.

    [33] [33] Sun Q, Jiang H, Liu Y, et al. Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica[J]. Optics Letters, 2005, 30(3): 320-322.

    [34] [34] Wang Z, Zeng B, Li G, et al. Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass[J]. Optics Letters, 2015, 40(24): 5726-5729.

    [35] [35] Chin S L. Femtosecond laser filamentation[M]. New York: Springer, 2010.

    [36] [36] Cheng Y, Xie H, Wang Z, et al. Onset of nonlinear self-focusing of femtosecond laser pulses in air: conventional vs spatiotemporal focusing[J]. Physical Review A, 2015, 92(2): 023854.

    Tools

    Get Citation

    Copy Citation Text

    Jing Chenrui, Wang Zhaohui, Cheng Ya. Three-Dimensional Micro- and Nano-Machining Based on Spatiotemporal Focusing Technique of Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 17, 2016

    Accepted: --

    Published Online: Apr. 19, 2017

    The Author Email: Chenrui Jing (jing1989111@sina.com)

    DOI:10.3788/lop54.040005

    Topics