Journal of Innovative Optical Health Sciences, Volume. 16, Issue 6, 2340002(2023)

Comparison of the emission wavelengths by a single °uorescent dye on in vivo 3-photon imaging of mouse brains

Ke Wang1... Wanjian Zhang1, Xiangquan Deng1, Shen Tong1, Hui Cheng1, Mengyuan Qin1, Lei Zheng1, Kun Zhao2, Ruizhan Zhai2, Zhongqing Jia2 and Ping Qiu1,* |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060, P. R. China
  • 2Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Qingdao Shandong 266000, P. R. China
  • show less
    References(27)

    [1] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [2] V. Parodi et al. Nonlinear optical microscopy: From fundamentals to applications in live bioimaging. Front. Bioeng. Biotechnol., 8, 585363(2020).

    [3] Y. Sun, H. Tu, S. A. Boppart. Nonlinear optical imaging by detection with optical parametric amplification. J. Innov. Opt. Health Sci., 16, 2245001-2245010(2023).

    [6] N. G. Horton et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon., 7, 205-209(2013).

    [7] S. aGigan et al. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys. Photon., 4, 042501(2022).

    [8] W.-F. Cheong, S. A. Prahl, A. J. Welch. A review of the optical properties of biological tissues. IEEE J. Quantum Electron., 26, 2166-2185(1990).

    [9] P. J. Helm, O. P. Ottersen, G. Nase. Analysis of optical properties of the mouse cranium—Implications for in vivo multi photon laser scanning microscopy. J. Neurosci. Meth., 178, 316-322(2009).

    [10] M. Balu et al. Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media. J. Biomed. Opt., 14, 010508(2009).

    [11] D. Kobat et al. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Exp., 17, 13354-13364(2009).

    [12] D. Kobat, N. G. Horton, C. Xu. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt., 16, 106014(2011).

    [13] H. Liu et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots. Nano Lett., 19, 5260-5265(2019).

    [14] M. Wang, M. Kim, F. Xia, C. Xu. Impact of the emission wavelengths on in vivo multiphoton imaging of mouse brains. Biomed. Opt. Exp., 10, 1905-1918(2019).

    [16] K. Wang, Y. Pan, X. Chen, S. Tong, H. Liang, Y. Lu, P. Qiu. 3-photon fluorescence and third-harmonic generation imaging of myelin sheaths in mouse digital skin in vivo: A comparative study. J. Innov. Opt. Health Sci., 15, 2250003(2022).

    [18] Z. Xu et al. Deep-brain three-photon imaging enabled by aggregation-induced emission luminogens with near-infrared-III excitation. ACS Nano, 16, 6712-6724(2022).

    [19] X. Deng et al. In Vivo 3-photon fluorescence imaging of mouse subcortical vasculature labeled by AIEgen before and after craniotomy. Adv. Funct. Mater., 32, 2205151(2022).

    [20] G. Paxinos, K. B. Franklin. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates(2019).

    [21] C. Erö, M.-O. Gewaltig, D. Keller, H. Markram. A cell atlas for the mouse brain. Front. Neuroinf., 12, 84(2018).

    [22] M.-A. Mycek, B. W. Pogue. Handbook of Biomedical Fluorescence(2003).

    [23] X. Deng, X. Gan, M. Gu. Monte Carlo simulation of multiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media. J. Biomed. Opt., 8, 440-449(2003).

    [24] M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak. Two-photon microscopy in brain tissue: Parameters influencing the imaging depth. J. Neurosci. Meth., 111, 29-37(2001).

    [25] I. V. Meglinski, S. J. Matcher. Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiol. Meas., 23, 741(2002).

    [26] C. Mätzler. “MATLAB functions for Mie scattering and absorption Version 2,” Research Report No. 2002-11. Institut für Angewandte Physik (2002).

    [28] L. Reynolds, C. Johnson, A. Ishimaru. Diffuse reflectance from a finite blood medium: Applications to the modeling of fiber optic catheters. Appl. Opt., 15, 2059-2067(1976).

    Tools

    Get Citation

    Copy Citation Text

    Ke Wang, Wanjian Zhang, Xiangquan Deng, Shen Tong, Hui Cheng, Mengyuan Qin, Lei Zheng, Kun Zhao, Ruizhan Zhai, Zhongqing Jia, Ping Qiu. Comparison of the emission wavelengths by a single °uorescent dye on in vivo 3-photon imaging of mouse brains[J]. Journal of Innovative Optical Health Sciences, 2023, 16(6): 2340002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 8, 2023

    Accepted: Mar. 15, 2023

    Published Online: Dec. 23, 2023

    The Author Email: Qiu Ping (pingqiu@szu.edu.cn)

    DOI:10.1142/S1793545823400023

    Topics