AEROSPACE SHANGHAI, Volume. 41, Issue 6, 46(2024)
Potential Gain of Quasi-eccentric Collision on the Kinetic Impact Orbit Deflection in Planetary Defense Missions
[1] M REBOLLEDO-VIEYRA, L E MARIN, A TREJO-GARCÍA et al. The chicxulub impact crater and its influence on the regional hy-drogeology in northwest yucatan,mexico. Gulf of Mexico origin,waters,and biota, 279-290(2011).
[3] M F A’HEARN, M BELTON, W DELAMERE et al. Deep impact:excavating comet tempel 1. science, 310, 258-264(2005).
[10] C PALMER. 美国DART航天器尽显小行星防御潜力(英文). Engineering, 24, 7-9(2023).
[13] A F CHENG, H F AGRUSA, B W BARBEE et al. Momentum transfer from the dart mission kinetic impact on asteroid Dimorphos. Nature, 616, 457-460(2023).
[14] S RADUCAN, T DAVISON, G COLLINS. Ejecta distribution and momentum transfer from oblique impacts on asteroid surfaces. Icarus, 374, 114793(2022).
[15] M VASILE, C COLOMBO. Optimal impact strategies for asteroid deflection. Journal of Guidance,Control,and Dynamics, 31, 858-872(2008).
[16] A CARUSI, G B VALSECCHI, G D’ABRAMO et al. Deflecting NEOs in route of collision with the earth. Icarus, 417-422(2002).
[17] B A CONWAY. Near-optimal deflection of earth-approaching asteroids. Journal of Guidance,Control,and Dynamics, 24, 1035-1037(2001).
[18] D SCHEERES, R SCHWEICKART. The mechanics of moving asteroids, 1446(2004).
[20] Y F JIAO, B CHENG, H X BAOYIN. Optimal kinetic-impact geometry for asteroid deflection exploiting delta-v hodograph. Journal of Guidance,Control,and Dynamics, 46, 382-389(2023).
[21] J L ANDERSON, P H SCHULTZ, J T HEINECK. Experimental ejection angles for oblique impacts:Implications for the subsurface flow-field. Meteorit.Planet.Sci, 39, 303-320(2004).
[22] G COLLINS, K WÜNNEMANN. The effect of porosity and friction on ejection processes:Insight from numerical modeling. Bridging the Gap II:Effect of Target Properties on the Impact Cratering Process, 1360, 35-36(2007).
[23] S YAMAMOTO, A M NAKAMURA. Velocity measurements of impact ejecta from regolith targets. Icarus, 128, 160-170(1997).
[24] J D GIORGINI, L A M BENNER, S J OSTRO et al. Predicting the Earth encounters of (99942) Apophis. Icarus, 193, 1-19(2008).
[25] R STEVEN. Potential impact detection for near-Earth asteroids:the case of 99942 apophis (2004 MN4). Proceedings of the International Astronomical Union, 1, 215-228(2005).
[26] P JENNISKENS, O P POPOVA, D O GLAZACHEV et al. Tunguska eyewitness accounts,injuries,and casualties. Icarus, 327, 4-18(2019).
[27] I DE PATER, J J LISSAUER. Planetary sciences(2015).
[28] P RICHARD. The Torino impact hazard scale. Planetary and Space Science, 48, 297-303(2000).
[29] D A VALLADO. Fundamentals of astrodynamics and applications(2001).
[30] D G BETTIS. Stabilization of cowell's method. Numerische Mathematik, 154-175(1969).
[31] K T LEE, Z Q FANG, Z K WANG. Investigation of the incremental benefits of eccentric collisions in kinetic deflection of potentially hazardous asteroids. Icarus, 116312(2025).
Get Citation
Copy Citation Text
Kin Thong LEE, Zhaokui WANG. Potential Gain of Quasi-eccentric Collision on the Kinetic Impact Orbit Deflection in Planetary Defense Missions[J]. AEROSPACE SHANGHAI, 2024, 41(6): 46
Category:
Received: Jan. 26, 2024
Accepted: --
Published Online: Mar. 7, 2025
The Author Email: