Opto-Electronic Engineering, Volume. 50, Issue 1, 220158(2023)

Breast tumor grading network based on adaptive fusion and microscopic imaging

Pan Huang1... Peng He1, Xing Yang2, Jiayang Luo1, Hualiang Xiao3,*, Sukun Tian4,** and Peng Feng1,*** |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • 2College of Computer and Network Security, Chengdu University of Technology, Chengdu, Sichuan 610000, China
  • 3Daping Hospital, Department of Pathology, Army Military Medical University, Chongqing 400037, China
  • 4School of Mechanical Engineering, Shandong University, Jinan, Shandong 250000, China
  • show less
    Figures & Tables(11)
    Block diagram of the algorithm in this paper. (a) ER IHC staining based microscopic imaging procedure for breast cancer pathology; (b) AMFNet
    Detail diagram of the AFF method implementation
    AFRM method implementation schematic
    Visually interpretative results comparisons with SOTA and our method on the breast cancer IHC microscopic imaging
    Comparison of visualization results of histopathological images of brain cancer
    • Table 1. Distribution of the number of ER IHC datasets for breast cancer

      View table
      View in Article

      Table 1. Distribution of the number of ER IHC datasets for breast cancer

      DatasetsParameter
      Grade IGrade IIGrade IIIImage sizeTotal
      Training set268355360224×224983
      Validation set90118120224×224328
      Testing set90119120224×224329
      Total448592600224×2241640
    • Table 2. Classification confusion matrix

      View table
      View in Article

      Table 2. Classification confusion matrix

      RealityForecast result
      PositiveNegative
      PositiveTrue positive (TP)False negative (FN)
      NegativeFalse positive (FP)True negative (TN)
    • Table 3. Ablation of AMF method in ER IHC pathological microimaging of breast cancer

      View table
      View in Article

      Table 3. Ablation of AMF method in ER IHC pathological microimaging of breast cancer

      ModelAMF methodAverage acc/%PRF1AUC
      MOOAFRMAFF
      AMFNet (ViT-AMCNN blocks)69.000.69340.69000.69030.7643
      92.400.92400.92400.92400.9423
      93.920.94030.93920.93940.9532
      95.140.95200.95140.95130.9617
    • Table 4. Tumor grading accuracy of breast cancer ER IHC histopathology microscopic imaging

      View table
      View in Article

      Table 4. Tumor grading accuracy of breast cancer ER IHC histopathology microscopic imaging

      ModelGrade I acc/%Grade II acc/%Grade III acc/%Average acc/%PRF1AUC
      Inception V3[36]74.7178.1978.0177.200.77210.77200.77170.8290
      Xception V3[37]71.8268.4076.4272.340.72260.72340.72260.7925
      ResNet50[38]72.9673.7776.0874.470.75240.74470.74390.8085
      DenseNet121[39]82.8077.5381.6380.550.80590.80550.80470.8541
      DenseNet121+Nonlocal[40]85.8884.3981.9783.890.83960.83890.83910.8791
      DenseNet121+SENet[41]79.5583.2784.3982.670.82720.82670.82660.8700
      DenseNet121+CBAM[42]82.7681.2084.8082.980.83070.82980.82940.8723
      DenseNet121+HIENet[43]86.2185.5985.4885.710.85850.85710.85720.8928
      FABNet[15]86.0591.2984.9087.540.87650.87540.87520.9036
      ViT-S/16[27]54.0255.8769.2060.1860.3760.180.60230.6970
      ViT-B/16[27]85.8786.3284.1785.410.85460.85410.85410.8913
      ViT-B/32[27]68.6070.0073.9871.120.71140.71120.71070.7799
      ViT-L/16[27]78.9879.1781.2379.940.81130.79940.79870.8430
      ViT-L/32[27]50.3561.2159.8358.360.60180.58360.57740.6770
      AMFNet (ours)92.6697.0295.1295.14 7.60.95200.95140.95130.9617
    • Table 5. Distribution of the number of brain cancer histopathology image datasets

      View table
      View in Article

      Table 5. Distribution of the number of brain cancer histopathology image datasets

      DatasetsGrade IGrade IIGrade IIIGrade IVTotal
      Training set2764928738912532
      Validation set91164290296841
      Testing set91164290296841
      Total458820145314834214
    • Table 6. Comparison table of tumor grading accuracy of histopathological images of brain cancer

      View table
      View in Article

      Table 6. Comparison table of tumor grading accuracy of histopathological images of brain cancer

      ModelMetrics
      Grade I acc/%Grade II acc/%Grade III acc/%Grade IV acc/%Average acc/%PRF1AUC
      Inception V3[36]84.1668.1180.6278.0577.760.77790.77760.77660.8575
      Xception V3[37]84.9572.3478.3180.8078.830.79760.78830.78740.8588
      ResNet50[38]82.0065.6266.4371.1269.800.69630.69800.69610.8091
      DenseNet121[39]87.0574.7574.8681.7578.950.79780.78950.78580.8625
      DenseNet121+Nonlocal[40]91.8481.9086.7089.3987.400.87630.87400.87270.9195
      DenseNet121+SENet[41]96.2284.9788.0590.2589.180.89250.89180.89110.9279
      DenseNet121+CBAM[42]92.7182.0089.0486.7787.400.87500.87400.87260.9162
      DenseNet121+HIENet[43]95.7085.9987.8187.5088.230.88510.88230.88200.9244
      FABNet[15]93.6887.7090.9790.8290.610.90720.90610.90570.9391
      ViT-S/16[27]65.9846.9865.9769.7364.210.63750.64210.63590.7489
      ViT-B/16[27]83.9080.0087.8386.8385.610.86180.85610.85530.9028
      ViT-B/32[27]81.4862.5978.9377.2075.740.75500.75740.75410.8319
      ViT-L/16[27]70.7954.4972.0573.5669.320.68970.69320.69020.7808
      ViT-L/32[27]75.4958.0273.7675.0871.700.71520.71700.71340.8084
      AMFNet (ours)98.3293.3894.3093.9094.413.80.94510.94410.94420.9611
    Tools

    Get Citation

    Copy Citation Text

    Pan Huang, Peng He, Xing Yang, Jiayang Luo, Hualiang Xiao, Sukun Tian, Peng Feng. Breast tumor grading network based on adaptive fusion and microscopic imaging[J]. Opto-Electronic Engineering, 2023, 50(1): 220158

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jul. 8, 2022

    Accepted: Sep. 6, 2022

    Published Online: Feb. 27, 2023

    The Author Email:

    DOI:10.12086/oee.2023.220158

    Topics