Laser & Optoelectronics Progress, Volume. 60, Issue 9, 0913001(2023)

Microring-Based Response-Switchable Microwave Photonic Filter

Liangchen Sun1,2, Jinye Li1, Qianqian Jia1,3, Wenqi Yu4, Shuangxing Dai1,3, Yiru Zhao1,3, Jiwang Peng1,3, Mingxuan Li1, and Jianguo Liu1,3、*
Author Affiliations
  • 1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Optical Communication Research and Development Center, 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, Hebei, China
  • show less
    References(37)

    [1] Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters[J]. Journal of Lightwave Technology, 24, 201-229(2006).

    [2] Seeds A J, Williams K J. Microwave photonics[J]. Journal of Lightwave Technology, 24, 4628-4641(2006).

    [3] Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 27, 314-335(2009).

    [4] Marpaung D, Roeloffzen C, Heideman R et al. Integrated microwave photonics[J]. Laser & Photonics Reviews, 7, 506-538(2013).

    [5] Zhang W F, Yao J P. Silicon-based integrated microwave photonics[J]. IEEE Journal of Quantum Electronics, 52, 0600412(2016).

    [6] Marpaung D, Yao J P, Capmany J. Integrated microwave photonics[J]. Nature Photonics, 13, 80-90(2019).

    [7] Liu Y, Choudhary A, Marpaung D et al. Integrated microwave photonic filters[J]. Advances in Optics and Photonics, 12, 485-555(2020).

    [8] Mei L, Chong Y H, Zhu Y P et al. Optical delay line-based microwave photonic zero-intermediate-frequency receiver[J]. Chinese Journal of Lasers, 48, 0906001(2021).

    [9] Huang L F, Li Y J, Zhao S H et al. Microwave instantaneous frequency measurement based on single lightpath polarization multiplexing[J]. Laser & Optoelectronics Progress, 58, 1929002(2021).

    [10] Liu Y, Li J, He Y J et al. Generator of signals with quadruple frequency and triangular waveform tunable in symmetry based on dual-parallel Mach-Zehnder modulator and balanced photodetector[J]. Acta Optica Sinica, 41, 1906005(2021).

    [11] Atabaki A H, Moazeni S, Pavanello F et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 556, 349-354(2018).

    [12] Han Y S, Luo W J, Xie S C et al. Photonic generation of microwave waveforms based on dual parallel phase modulator[J]. Laser & Optoelectronics Progress, 58, 2306007(2021).

    [13] Xing Y L, Li S Y, Xue X X et al. High-frequency broadband-distributed coherent-aperture microwave photonic imaging radar[J]. Chinese Journal of Lasers, 48, 1517003(2021).

    [14] Chen K Y, Dong J H, Chen R Y et al. A 45Gb/s 7.5 μm-radius Si micro-ring modulator driven by 3.3 Vpp voltage[C](2020).

    [15] Do P T, Alonso-Ramos C, Le Roux X et al. Wideband tunable microwave signal generation in a silicon-micro-ring-based optoelectronic oscillator[J]. Scientific Reports, 10, 6982(2020).

    [16] Capmany J, Novak D. Microwave photonics combines two worlds[J]. Nature Photonics, 1, 319-330(2007).

    [17] Yang H M, Li J, Zheng P F et al. A stopband and passband switchable microwave photonic filter based on integrated dual ring coupled Mach-Zehnder interferometer[J]. IEEE Photonics Journal, 11, 5502608(2019).

    [18] Qiu H Q, Zhou F, Qie J R et al. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator[J]. Journal of Lightwave Technology, 36, 4312-4318(2018).

    [19] Palaci J, Villanueva G E, Galán J V et al. Single bandpass photonic microwave filter based on a notch ring resonator[J]. IEEE Photonics Technology Letters, 22, 1276-1278(2010).

    [20] Zhang D K, Feng X, Huang Y D. Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate[J]. IEEE Photonics Technology Letters, 24, 1502-1505(2012).

    [21] Dong J J, Liu L, Gao D S et al. Compact notch microwave photonic filters using on-chip integrated microring resonators[J]. IEEE Photonics Journal, 5, 5500307(2013).

    [22] Dai T G, Shen A, Wang G C et al. Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators[J]. Optics Letters, 41, 4807-4810(2016).

    [23] Zhang D K, Feng X, Li X D et al. Tunable and reconfigurable bandstop microwave photonic filter based on integrated microrings and Mach-Zehnder interferometer[J]. Journal of Lightwave Technology, 31, 3668-3675(2013).

    [24] Jiang W J, Xu L, Liu Y F et al. Optical filter switchable between bandstop and bandpass responses in SOI wafer[J]. IEEE Photonics Technology Letters, 32, 1105-1108(2020).

    [25] Ehteshami N, Zhang W F, Yao J P. Optically tunable single passband microwave photonic filter based on phase-modulation to intensity-modulation conversion in a silicon-on-insulator microring resonator[C](2015).

    [26] Tao Y S, Shu H W, Wang X J et al. Hybrid-integrated high-performance microwave photonic filter with switchable response[J]. Photonics Research, 9, 1569-1580(2021).

    [27] Liu X L, Yu Y, Tang H T et al. Silicon-on-insulator-based microwave photonic filter with narrowband and ultrahigh peak rejection[J]. Optics Letters, 43, 1359-1362(2018).

    [28] Rasras M S, Tu K Y, Gill D M et al. Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators[J]. Journal of Lightwave Technology, 27, 2105-2110(2009).

    [29] Marpaung D, Morrison B, Pagani M et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity[J]. Optica, 2, 76-83(2015).

    [30] Choudhary A, Aryanfar I, Shahnia S et al. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters[J]. Optics Letters, 41, 436-439(2016).

    [31] Liu Y, Choudhary A, Ren G H et al. Integration of Brillouin and passive circuits for enhanced radio-frequency photonic filtering[J]. APL Photonics, 4, 106103(2019).

    [32] Morrison B, Casas-Bedoya A, Ren G H et al. Compact Brillouin devices through hybrid integration on silicon[J]. Optica, 4, 847-854(2017).

    [33] Yu Y, Xu E M, Dong J J et al. Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation[J]. Optics Express, 18, 25271-25282(2010).

    [34] Sancho J, Bourderionnet J, Lloret J et al. Integrable microwave filter based on a photonic crystal delay line[J]. Nature Communications, 3, 1075(2012).

    [35] Yu W Q, Dai S X, Zhao Q F et al. Wideband and compact TM-pass polarizer based on hybrid plasmonic grating in LNOI[J]. Optics Express, 27, 34857-34863(2019).

    [36] Burla M, Cortés L R, Li M et al. Integrated waveguide Bragg gratings for microwave photonics signal processing[J]. Optics Express, 21, 25120-25147(2013).

    [37] Gan X T, Zhao J L. Resonance lineshapes in optical cavity[J]. Acta Optica Sinica, 41, 0823007(2021).

    Tools

    Get Citation

    Copy Citation Text

    Liangchen Sun, Jinye Li, Qianqian Jia, Wenqi Yu, Shuangxing Dai, Yiru Zhao, Jiwang Peng, Mingxuan Li, Jianguo Liu. Microring-Based Response-Switchable Microwave Photonic Filter[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0913001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Feb. 8, 2022

    Accepted: Mar. 9, 2022

    Published Online: May. 9, 2023

    The Author Email: Liu Jianguo (jgliu@semi.ac.cn)

    DOI:10.3788/LOP220682

    Topics