Chinese Journal of Quantum Electronics, Volume. 29, Issue 3, 269(2012)

New multi-order envelope periodic solutions to cubic nonlinear Schr dinger equation

Ya-feng XIAO1,*... Hai-li XUE2 and Hong-qing ZHANG3 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(16)

    [1] [1] Miura M R. Bcklund Transformation [M]. Berlin: Springer-Verlag, 1978.

    [3] [3] Hirota R. Exact solution of the Korteweg-de Vries for multiple collisions of solutions [J]. Phys. Rev. Lett., 1971, 27: 1192-1194.

    [4] [4] Wang Mingliang. Solitary wave solutions for variant Boussinesq equations [J]. Phys. Lett. A, 1996, 199: 169-172.

    [5] [5] Wang Mingliang, Zhou Yubin, Li Zhibin. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics [J]. Phys. Lett. A, 1996, 216: 67-75.

    [6] [6] Weiss J, Tabor M, Carnevale G. The Painlevé property for partial differential equations [J]. J. Math. Phys., 1983, 24: 552-564.

    [8] [8] Nayfeh A H. Perturbation Methods [M]. New York: John Wiley and Sons Inc., 1973.

    [9] [9] Liu Shikuo, Fu Zuntao, Liu Shida, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J]. Phys. Lett. A, 2001, 289: 69-74.

    [10] [10] Fu Zuntao, Liu Shikuo, Liu Shida, et al. The JEFE method and periodic solutions of two kinds of nonlinear wave equations [J]. Commu. Nonlinear. Sci. Simul., 2003, 8: 67-75.

    [12] [12] Yan Zhenya. The extended Jacobian elliptic functions expansion method and its application in the generalized Hirota-Satsuma coupled KdV systems [J]. Chaos, Solitons and Fractals, 2003, 15(3): 575-583.

    [17] [17] Liu Shikuo, Fu Zuntao, Liu Shida, et al. Lamé equation and multi-order exact solutions to nonlinear evolution equations [J]. Chaos, Soliton and Fractals, 2004, 19: 795-801.

    [20] [20] Fu Zuntao, Yuan Naiming, et al. Multi-order exact solutions to the Drinfel’d-Sokolov-Wilson equations [J]. Phys. Lett. A, 2009, 373: 3710-3714.

    [21] [21] Fu Zuntao, Yuan Naiming, et al. New Lamé equation and its application to nonlinear equations [J]. Phys. Lett. A, 2009, 374: 214-217.

    [22] [22] Wang Zhuxi, Guo Dunren. Special Functions [M]. Singapore: World Scientific Press, 1989.

    [23] [23] Fan Engui. Extended tanh-function method and its application to nonlinear equation [J]. Phys. Lett. A, 2000, 277: 212-218.

    [24] [24] Kudryashov N A. Exact solutions of the generalized Kuramoto-Sivashinsky equation [J]. Phys. Lett. A, 1990, 147: 287-291.

    [25] [25] Yan Chuntao. A simple transformation for nonlinear waves [J]. Phys. Lett. A, 1996, 224: 77-84.

    Tools

    Get Citation

    Copy Citation Text

    XIAO Ya-feng, XUE Hai-li, ZHANG Hong-qing. New multi-order envelope periodic solutions to cubic nonlinear Schr dinger equation[J]. Chinese Journal of Quantum Electronics, 2012, 29(3): 269

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 9, 2011

    Accepted: --

    Published Online: May. 28, 2012

    The Author Email: Ya-feng XIAO (yafengxiao@126.com)

    DOI:10.3969/j.issn.1007-5461. 2012.03.003

    Topics