Acta Optica Sinica, Volume. 37, Issue 1, 101001(2017)

Background and Stochastic Terms of Optical Turbulence Profile Based on Ensemble Empirical Mode Decomposition

Chen Xiaowei1,2、*, Li Xuebin11, Sun Gang1, Liu Qing1, Zhu Wenyue1, and Weng Ningquan1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(28)

    [1] [1] Andrews L C, Phillips R L. Laser beam propagation through random media[M]. Bellingham: SPIE Optical Engineering Press, 2005: 57-82.

    [2] [2] Rao Ruizhong. Modern atmospheric optics[M]. Beijing: Science Press, 2012: 68-218.

    [3] [3] Beland R R. Propagation through atmospheric optical turbulence[M]. Bellingham: SPIE Optical Engineering Press, 1993: 159-223.

    [4] [4] Coulman C E, Vernin J, Fuchs A. Optical seeing-mechanism of formation of thin turbulent laminae in the atmosphere[J]. Applied Optics, 34(24): 5461-5474.

    [5] [5] Racine R, Ellerbroek B L. Profiles of nighttime turbulence above Mauna Kea and isoplanatism extension in adaptive optics[C]. SPIE, 1995: 248-257.

    [6] [6] Azouit M, Vernin J. Optical turbulence profiling with balloons relevant to astronomy and atmospheric physics[J]. Publications of the Astronomical Society of the Pacific, 2005, 117(831): 536-543.

    [8] [8] Stull R B. An introduction to boundary layer meteorology[M]. Dordrecht: KluwerAcademic Publishers, 1988: 29-74.

    [9] [9] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.

    [10] [10] Wu Z H, Huang N E. Ensemble empirical mode decomposition: A noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.

    [11] [11] Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition using the empirical mode decomposition method[C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2004, 460(2046): 1597-1611.

    [12] [12] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2): 112-114.

    [13] [13] Huang N E, Wu M L C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2003, 459(2037): 2317-2345.

    [14] [14] Huang N E, Wu Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2): RG2006.

    [16] [16] Lagubeau G, Cobelli P, Bobinski T, et al. Empirical mode decomposition profilometry: small-scale capabilities and comparison to Fourier transform profilometry[J]. Applied Optics, 2015, 54(32): 9409-9414.

    [17] [17] Breaker L C, Ruzmaikin A. The 154-year record of sea level at San Francisco: extracting the long-term trend, recent changes, and other tidbits[J]. Climate Dynamics, 2011, 36(3): 545-559.

    [18] [18] Coulman C E, Vernin J, Fuchs A. Optical seeing-mechanism of formation of thin turbulent laminae in the atmosphere[J]. Applied Optics, 1995, 34(24): 5461-5474.

    [19] [19] Bufton J L. Comparison of vertical profile turbulence structure with stellar observations[J]. Applied Optics, 1973, 12(8): 1785-1793.

    [20] [20] Bufton J L. Correlation of microthermal turbulence data with meteorological soundings in the troposphere[J]. Journal of Atmospheric Sciences, 1972, 30(1): 83-87.

    [21] [21] Huang N E, Shen S S P. Hilbert-Huang transform and its applications[M]. Singapore: World Scientific, 2014: 1-222.

    [22] [22] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of American Meteorological Society, 1998, 79(1): 61-78.

    [23] [23] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A Statistical Mechanics & Its Applications, 2002, 316(1): 87-114.

    [24] [24] Telesca L, Colangelo G, Lapenna V, et al. Fluctuation dynamics in geoelectrical data: An investigation by using multifractal detrended fluctuation analysis[J]. Physics Letters A, 2004, 332(5): 398-404.

    [25] [25] Barille R, Lapenna P. Multifractality of laser beam spatial intensity in a turbulent medium[J]. Applied Optics, 2006, 45(14): 3331-3339.

    [26] [26] Lopez J L, Contreras J G. Performance of multifractal detrended fluctuation analysis on short time series[J]. Physical Review E, 2013, 87(2): 022918.

    [27] [27] Thompson J R, Wilson J R, Beauwens R. Multifractal detrended fluctuation analysis: Practical applications to financial time series[J]. Mathematics & Computers in Simulation, 2016, 126: 63-88.

    [28] [28] Mali P. Multifractal characterization of global temperature anomalies[J]. Theoretical and Applied Climatology, 2015, 121(3-4): 641-648.

    Tools

    Get Citation

    Copy Citation Text

    Chen Xiaowei, Li Xuebin1, Sun Gang, Liu Qing, Zhu Wenyue, Weng Ningquan. Background and Stochastic Terms of Optical Turbulence Profile Based on Ensemble Empirical Mode Decomposition[J]. Acta Optica Sinica, 2017, 37(1): 101001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jul. 18, 2016

    Accepted: --

    Published Online: Jan. 13, 2017

    The Author Email: Xiaowei Chen (kachenxiaowei@126.com)

    DOI:10.3788/aos201737.0101001

    Topics