Journal of Innovative Optical Health Sciences, Volume. 12, Issue 5, 1940003(2019)
Green emitted CdSe@ZnS quantum dots for FLIM and STED imaging applications
[1] [1] S. J. Sahl, W. Moerner, “Super-resolution fluorescence imaging with single molecules," Curr. Opin. Struct. Biol. 23, 778–787 (2013).
[2] [2] E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy," Science 262, 1422–1425 (1993).
[3] [3] S. W. Hell, N. S. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy," Opt. Lett. 19, 780–782 (1994).
[4] [4] M. A. A. Neil, R. JusKaitis, T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination," Opt. Commun. 153, 1–4 (1998).
[5] [5] S. W. Hell, G. Donnert, J. Kelleretal, “Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[6] [6] T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N. T. Urban, F. Lavoie-Cardinal, K. I. Willig, C. Eggeling, S. Jakobs, S. W. Hell, “Diffractionunlimited all-optical imaging and writing with a photochromic GFP," Nature 478, 204–208 (2011).
[7] [7] M. Bossi, J. F€olling, M. Dyba, V. Westphal, S. W. Hell, “Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability," New J. Phys. 8, 275(1–10) (2006).
[8] [8] V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope," Phys. Rev. Lett. 94, 143903(1–4) (2005).
[9] [9] Y. Lin, K. Nienhaus, G. U. Nienhaus, “Nanoparticle probes for super-resolution fluorescence microscopy," ChemNanoMat. 4, 253–264 (2018).
[10] [10] D. Jin, P. Xi, B. Wang, L. Zhang, J. Enderlein, A. M. van Oijen, Nanoparticles for super-resolution microscopy and single molecule tracking," Nat. Meth. 15, 415–423 (2018).
[11] [11] L. Shang, P. Gao, H. Wang, R. Popescu, D. R. Gerthsend, G. U. Nienhaus, “Protein-based fluorescent nanoparticles for superresolution STED imaging of live cells," Chem. Sci. 8, 2396–2400 (2017).
[12] [12] D. Weoll, C. Flors, “Super-resolution fluorescence imaging for materials science," Small Meth. 1, 1700191 (2017).
[13] [13] D. Li, W. Qin, B. Xu, J. Qian, B. Z. Tang, “AIE nanoparticles with high stimulated emission depletion e±ciency and photobleaching resistance for long-term super-resolution bioimaging," Adv. Mater. 29(43), 1703643 (2017).
[14] [14] G. Vicidomini, P. Bianchini, A. Diaspro, “STED super-resolved microscopy," Nat. Meth. 15, 173–182 (2018).
[15] [15] Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, “Amplified stimulated emission in upconversion nanoparticles for superresolution nanoscopy," Nature 545, 229–233 (2017).
[16] [16] Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. S Agren, S. He, “Achieving high-e±ciency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles," Nat. Commun. 8, 1058 (2017).
[17] [17] S. Ye, M. Zhao, J. Song, J. Qu, “Controllable emission bands and morphologies of high-quality CsPbX3 perovskite nanocrystals prepared in octane," Nano Res. 11, 4654–4663 (2018).
[18] [18] S. Ye, W. Yan, M. Zhao, X. Peng, J. Song, J. Qu, “Low-saturation-intensity, high-photostability, and high-resolution STED nanoscopy assisted by CsPbBr3 quantum dots," Adv. Mater. 30, 1800167 (2018).
[19] [19] S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, S. W. Hell, “Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots," Angewandte Chemie 120, 2725–2728 (2008).
[20] [20] G. Lemenager, E. D. Luca, Y. Sun, P. P. Pompa, “Super-resolution fluorescence imaging of biocompatible carbon dots," Nanoscale 6, 8617–8623 (2014).
[21] [21] J. Hanne, H. J. Falk, F. Gorlitz, P. Hoyer, J. Engelhardt, S. J. Sahl, S. W. Hell, “STED nanoscopy with fluorescent quantum dots," Nat. Commun. 6, 7127 (2015).
[22] [22] A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: Monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging," Theranostics 5, 919–930 (2015).
[23] [23] S. Zhou, X. Peng, H. Xu, Y. Qin, D. Jiang, J. Qu, H. Y. Chen, “Fluorescence lifetime-resolved ionselective nanospheres for simultaneous imaging of calcium ion in mitochondria and lysosomes," Anal. Chem. 90, 7982–7988 (2018).
[24] [24] A. Pliss, S. M. Levchenko, L. Liu, X. Peng, T. Y. Ohulchanskyy, I. Roy, A. N. Kuzmin, J. Qu, P. N. Prasad, “Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging, Nat. Commun. 10, 455 (2019).
Get Citation
Copy Citation Text
Mengjie Zhao, Shuai Ye, Xiao Peng, Jun Song, Junle Qu. Green emitted CdSe@ZnS quantum dots for FLIM and STED imaging applications[J]. Journal of Innovative Optical Health Sciences, 2019, 12(5): 1940003
Received: Mar. 27, 2019
Accepted: May. 22, 2019
Published Online: Oct. 22, 2019
The Author Email: Ye Shuai (yes121@szu.edu.cn)