Journal of Infrared and Millimeter Waves, Volume. 44, Issue 2, 251(2025)

Infrared remote sensing image super-resolution network by integration of dense connection and multi-attention mechanism

Xin-hao XU1... Jun WANG1,2, Feng WANG1,* and Sheng-li SUN2 |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves(MoE),School of Information Science and Technology,Fudan University,Shanghai 200433,China
  • 2Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    Figures & Tables(12)
    Network structure
    Attention feature extract block(AFEB)
    Structure of Swin Transformer block(STB)
    Structure of multi-scale channel attention(MSCA)
    Comparison of reconstructed images by different super resolution algorithms on the ISDD test set: (a) HR (PSNR/SSIM); (b) Bicubic (36.10/0.9572); (c) ESRGAN (34.32/0.9340); (d) CRAFT-SR (39.54/0.9766); (e) SAMFN (39.51/0.9758);(f)DSSR(38.27/0.9695);(g)TransENet(38.48/0.9648);(h)ours(39.55/0.9769)
    Comparison of reconstructed images by different super resolution algorithms on the NUDT-SIRST-Sea test set::(a)HR(PSNR/SSIM);(b)Bicubic(30.04/0.8152);(c)ESRGAN(29.46/0.8164);(d)CRAFT-SR(31.69/0.8789);(e)SAMFN(31.63/0.8736);(f)DSSR(31.40/0.8654);(g)TransENet(31.15/0.8564);(h)ours(31.77/0.8818)
    • Table 1. Ablation results of ISDD

      View table
      View in Article

      Table 1. Ablation results of ISDD

      Model1Model2Model3Model4Model5
      Dense block
      MSCA
      Joint loss
      Discriminator
      PSNR/dB46.537446.872646.922046.974147.0499
      SSIM0.97640.97850.97890.97950.9801
      FID12.489511.197010.94249.96079.7600
    • Table 2. Ablation results of NUDT-SIRST-Sea

      View table
      View in Article

      Table 2. Ablation results of NUDT-SIRST-Sea

      Model1Model2Model3Model4Model5
      Dense block
      MSCA
      Joint loss
      Discriminator
      PSNR/dB41.749641.758741.773241.778941.7804
      SSIM0.94150.94190.94270.94470.9450
      FID16.486815.896415.746915.168714.5104
    • Table 3. Impact of each submodule on the computational complexity of the model

      View table
      View in Article

      Table 3. Impact of each submodule on the computational complexity of the model

      Model1Model2Model3Model4Model5
      可训练参数量/1063.25763.25763.25983.25987.0915
      FLOPs/10958.333458.333458.351258.351259.1132
      平均推理时间/s0.03440.03460.03580.03620.0362
    • Table 4. Comparison results of different super resolution algorithms on the ISDD test set

      View table
      View in Article

      Table 4. Comparison results of different super resolution algorithms on the ISDD test set

      评估指标HRbicubicESRGANCRAFT-SRSAFMNDSSRTransENetOurs
      PSNR\46.289445.332946.994146.975146.384744.864647.0499
      SSIM\0.97510.96920.97960.97840.97710.97350.9801
      FID\18.976016.30939.90299.954511.307219.58069.7600
      mAP500.9500.9400.9250.9380.9440.9340.9430.947
      mAP50-950.5360.5250.5070.5230.5270.5150.5250.530
    • Table 5. Comparison results of different super resolution algorithms on the NUDT-SIRST-Sea test set

      View table
      View in Article

      Table 5. Comparison results of different super resolution algorithms on the NUDT-SIRST-Sea test set

      评估指标HRbicubicESRGANCRAFT-SRSAFMNDSSRTransENetOurs
      PSNR\41.121939.102241.777541.665941.614140.701241.7804
      SSIM\0.93010.92430.94350.94300.94130.93730.9450
      FID\33.076541.173414.745314.655315.025519.345914.5104
      mAP500.6670.5280.5520.5550.5510.5520.5540.578
      mAP50-950.4250.2980.3200.3320.3300.3240.3230.340
    • Table 6. Comparison of computational complexity of different super-resolution algorithms

      View table
      View in Article

      Table 6. Comparison of computational complexity of different super-resolution algorithms

      ESRGANCRAFT-SRSAFMNDSSRTransENetOurs
      可训练参数量/10631.19740.75340.23958.902337.45897.0915
      FLOPs/109293.713512.53743.85211578.618612.068559.1132
      平均推理时间/s0.05160.05390.01070.07420.37440.0362
    Tools

    Get Citation

    Copy Citation Text

    Xin-hao XU, Jun WANG, Feng WANG, Sheng-li SUN. Infrared remote sensing image super-resolution network by integration of dense connection and multi-attention mechanism[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 251

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Interdisciplinary Research on Infrared Science

    Received: Jul. 23, 2024

    Accepted: --

    Published Online: Mar. 14, 2025

    The Author Email: WANG Feng (fengwang@fudan.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2025.02.013

    Topics