Spectroscopy and Spectral Analysis, Volume. 44, Issue 10, 2873(2024)
Estimation of Leaf Physical and Chemical Parameters Based on Hyperspectral Remote Sensing and Deep Learning Technologies
[1] [1] Li Dong,Chen Jingming,Yan Yan,et al. Remote Sensing of Environment,2022,283:113314.
[2] [2] Wong C Y S, D’Odorico P, Bhathena Y,et al. Remote Sensing of Environment,2019,233:111407.
[3] [3] Sonobe R,Hirono Y. Remote Sensing,2023,15(17):4303.
[4] [4] Falcioni R,Antunes W C,Dematt J A M,et al. Sensors,2023,23(8):3843.
[5] [5] Fret Jean-Baptiste,Berger Katja,de Boissieu Florian,et al. Remote Sensing of Environment,2021,252:112173.
[7] [7] Yue Jibo,Yang Hao,Feng Haikuan,et al. Computers and Electronics in Agriculture,2023,211:108011.
[8] [8] Hu Jingyu,Feng Hao,Wang Qilei,et al. Remote Sensing,2024,16(5):784.
[17] [17] Simonyan K,Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition, 2015, arXiv: 1409.1556V6[CS.CV].
Get Citation
Copy Citation Text
YUE Ji-bo, LENG Meng-die, TIAN Qing-jiu, GUO Wei, LIU Yang, FENG Hai-kuan, QIAO Hong-bo. Estimation of Leaf Physical and Chemical Parameters Based on Hyperspectral Remote Sensing and Deep Learning Technologies[J]. Spectroscopy and Spectral Analysis, 2024, 44(10): 2873
Received: Mar. 9, 2024
Accepted: Jan. 16, 2025
Published Online: Jan. 16, 2025
The Author Email: Hong-bo QIAO (qiaohb@henau.edu.cn)