Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2566(2024)
Thermal Induced Crystallization and Structure Transformation of Metal–Organic Framework Glass Fabricated by Sequential Perturbation Method
[1] [1] FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013,341(6149): 1230444.
[3] [3] KITAGAWA S. Future porous materials[J]. Acc Chem Res, 2017,50(3): 514–516.
[4] [4] QIAN Q H, ASINGER P A, LEE M J, et al. MOF-based membranes for gas separations[J]. Chem Rev, 2020, 120(16): 8161–8266.
[6] [6] YIN Z, ZHANG Y B, YU H B, et al. How to create MOF glasses and take advantage of emerging opportunities[J]. Sci Bull, 2020, 65(17):1432–1435.
[7] [7] BENNETT T D, HORIKE S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks[J]. Nat Rev Mater, 2018, 3: 431–440.
[8] [8] KENNEDY D, NORMAN C. What don’t we know?[J]. Science, 2005,309(5731): 75.
[10] [10] MA N, HORIKE S. Metal-organic network-forming glasses[J]. Chem Rev, 2022, 122(3): 4163–4203.
[11] [11] BENNETT T D, GOODWIN A L, DOVE M T, et al. Structure and properties of an amorphous metal-organic framework[J]. Phys Rev Lett,2010, 104(11): 115503.
[12] [12] BENNETT T D, TAN J C, YUE Y Z, et al. Hybrid glasses from strong and fragile metal-organic framework liquids[J]. Nat Commun, 2015, 6:8079.
[13] [13] BENNETT T D, YUE Y Z, LI P, et al. Melt-quenched glasses of metal-organic frameworks[J]. J Am Chem Soc, 2016, 138(10):3484–3492.
[14] [14] HORIKE S, UMEYAMA D, INUKAI M, et al. Coordination-networkbased ionic plastic crystal for anhydrous proton conductivity[J]. J Am Chem Soc, 2012, 134(18): 7612–7615.
[15] [15] UMEYAMA D, HORIKE S, INUKAI M, et al. Reversible solid-to-liquid phase transition of coordination polymer crystals[J]. J Am Chem Soc, 2015, 137(2): 864–870.
[16] [16] OGAWA T, TAKAHASHI K, KURIHARA T, et al. Network size control in coordination polymer glasses and its impact on viscosity and H+ conductivity[J]. Chem Mater, 2022, 34(13): 5832–5841.
[17] [17] THORNE M F, GóMEZ M L R, BUMSTEAD A M, et al.Mechanochemical synthesis of mixed metal, mixed linker, glass-forming metal–organic frameworks[J]. Green Chem, 2020, 22(8): 2505–2512.
[18] [18] SHAW B K, HUGHES A R, DUCAMP M, et al. Melting of hybrid organic-inorganic perovskites[J]. Nat Chem, 2021, 13(8): 778–785.
[19] [19] ZHAO Y B, LEE S Y, BECKNELL N, et al. Nanoporous transparent MOF glasses with accessible internal surface[J]. J Am Chem Soc, 2016,138(34): 10818–10821.
[20] [20] NOZARI V, CALAHOO C, TUFFNELL J M, et al. Ionic liquid facilitated melting of the metal-organic framework ZIF-8[J]. Nat Commun, 2021, 12(1): 5703.
[21] [21] ZENG M H, FENG X L, CHEN X M. Crystal-to-crystal transformations of a microporous metal–organic laminated framework triggered by guest exchange, dehydration and readsorption[J]. Dalton Trans, 2004(15): 2217–2223.
[22] [22] ZENG M H, WANG Q X, TAN Y X, et al. Rigid Pillars and double walls in a porous metal-organic framework: Single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity[J]. J Am Chem Soc, 2010, 132(8): 2561–2563.
[23] [23] YIN Z, WANG Q X, ZENG M H. Iodine release and recovery,influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework[J]. J Am Chem Soc, 2012,134(10): 4857–4863.
[24] [24] ZENG M H, YIN Z, TAN Y X, et al. Nanoporous cobalt(II) MOF exhibiting four magnetic ground states and changes in gas sorption upon post-synthetic modification[J]. J Am Chem Soc, 2014, 136(12):4680–4688.
[25] [25] YIN Z, WAN S, YANG J, et al. Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions[J]. Coord Chem Rev, 2019, 378: 500–512.
[26] [26] YIN Z, ZHAO Y B, WAN S, et al. Synergistic stimulation of metal–organic frameworks for stable super-cooled liquid and quenched glass[J]. J Am Chem Soc, 2022, 144(29): 13021–13025.
[27] [27] CHEN M Z, LI J, LIAO S, et al. Multi-stage transformations of a cluster-based metal-organic framework: Perturbing crystals to glass-forming liquids that re-crystallize at high temperature[J]. Angew Chem Int Ed, 2023, 62(29): e202305942.
[28] [28] ZENG M H, TAN Y X, HE Y P, et al. A porous 4-fold-interpenetrated chiral framework exhibiting vapochromism, single-crystal-to-singlecrystal solvent exchange, gas sorption, and a poisoning effect[J]. Inorg Chem, 2013, 52(5): 2353–2360.
[29] [29] LU T B, LUCK R L. Interlocking frameworks. A consequence of enlarging spacers from 4-pyridinecarboxylate to 4-(4-pyridyl) benzoate[J]. Inorg Chim Acta, 2003, 351: 345–355.
Get Citation
Copy Citation Text
LIU Tao, YIN Zheng, KUANG Xiaojun, ZENG Minghua. Thermal Induced Crystallization and Structure Transformation of Metal–Organic Framework Glass Fabricated by Sequential Perturbation Method[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2566
Category:
Received: Feb. 24, 2024
Accepted: --
Published Online: Dec. 4, 2024
The Author Email: Minghua ZENG (zmh@mailbox.gxnu.edu.cn)