Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2566(2024)

Thermal Induced Crystallization and Structure Transformation of Metal–Organic Framework Glass Fabricated by Sequential Perturbation Method

LIU Tao1...2, YIN Zheng2, KUANG Xiaojun1, and ZENG Minghua12,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(26)

    [1] [1] FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013,341(6149): 1230444.

    [3] [3] KITAGAWA S. Future porous materials[J]. Acc Chem Res, 2017,50(3): 514–516.

    [4] [4] QIAN Q H, ASINGER P A, LEE M J, et al. MOF-based membranes for gas separations[J]. Chem Rev, 2020, 120(16): 8161–8266.

    [6] [6] YIN Z, ZHANG Y B, YU H B, et al. How to create MOF glasses and take advantage of emerging opportunities[J]. Sci Bull, 2020, 65(17):1432–1435.

    [7] [7] BENNETT T D, HORIKE S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks[J]. Nat Rev Mater, 2018, 3: 431–440.

    [8] [8] KENNEDY D, NORMAN C. What don’t we know?[J]. Science, 2005,309(5731): 75.

    [10] [10] MA N, HORIKE S. Metal-organic network-forming glasses[J]. Chem Rev, 2022, 122(3): 4163–4203.

    [11] [11] BENNETT T D, GOODWIN A L, DOVE M T, et al. Structure and properties of an amorphous metal-organic framework[J]. Phys Rev Lett,2010, 104(11): 115503.

    [12] [12] BENNETT T D, TAN J C, YUE Y Z, et al. Hybrid glasses from strong and fragile metal-organic framework liquids[J]. Nat Commun, 2015, 6:8079.

    [13] [13] BENNETT T D, YUE Y Z, LI P, et al. Melt-quenched glasses of metal-organic frameworks[J]. J Am Chem Soc, 2016, 138(10):3484–3492.

    [14] [14] HORIKE S, UMEYAMA D, INUKAI M, et al. Coordination-networkbased ionic plastic crystal for anhydrous proton conductivity[J]. J Am Chem Soc, 2012, 134(18): 7612–7615.

    [15] [15] UMEYAMA D, HORIKE S, INUKAI M, et al. Reversible solid-to-liquid phase transition of coordination polymer crystals[J]. J Am Chem Soc, 2015, 137(2): 864–870.

    [16] [16] OGAWA T, TAKAHASHI K, KURIHARA T, et al. Network size control in coordination polymer glasses and its impact on viscosity and H+ conductivity[J]. Chem Mater, 2022, 34(13): 5832–5841.

    [17] [17] THORNE M F, GóMEZ M L R, BUMSTEAD A M, et al.Mechanochemical synthesis of mixed metal, mixed linker, glass-forming metal–organic frameworks[J]. Green Chem, 2020, 22(8): 2505–2512.

    [18] [18] SHAW B K, HUGHES A R, DUCAMP M, et al. Melting of hybrid organic-inorganic perovskites[J]. Nat Chem, 2021, 13(8): 778–785.

    [19] [19] ZHAO Y B, LEE S Y, BECKNELL N, et al. Nanoporous transparent MOF glasses with accessible internal surface[J]. J Am Chem Soc, 2016,138(34): 10818–10821.

    [20] [20] NOZARI V, CALAHOO C, TUFFNELL J M, et al. Ionic liquid facilitated melting of the metal-organic framework ZIF-8[J]. Nat Commun, 2021, 12(1): 5703.

    [21] [21] ZENG M H, FENG X L, CHEN X M. Crystal-to-crystal transformations of a microporous metal–organic laminated framework triggered by guest exchange, dehydration and readsorption[J]. Dalton Trans, 2004(15): 2217–2223.

    [22] [22] ZENG M H, WANG Q X, TAN Y X, et al. Rigid Pillars and double walls in a porous metal-organic framework: Single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity[J]. J Am Chem Soc, 2010, 132(8): 2561–2563.

    [23] [23] YIN Z, WANG Q X, ZENG M H. Iodine release and recovery,influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework[J]. J Am Chem Soc, 2012,134(10): 4857–4863.

    [24] [24] ZENG M H, YIN Z, TAN Y X, et al. Nanoporous cobalt(II) MOF exhibiting four magnetic ground states and changes in gas sorption upon post-synthetic modification[J]. J Am Chem Soc, 2014, 136(12):4680–4688.

    [25] [25] YIN Z, WAN S, YANG J, et al. Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions[J]. Coord Chem Rev, 2019, 378: 500–512.

    [26] [26] YIN Z, ZHAO Y B, WAN S, et al. Synergistic stimulation of metal–organic frameworks for stable super-cooled liquid and quenched glass[J]. J Am Chem Soc, 2022, 144(29): 13021–13025.

    [27] [27] CHEN M Z, LI J, LIAO S, et al. Multi-stage transformations of a cluster-based metal-organic framework: Perturbing crystals to glass-forming liquids that re-crystallize at high temperature[J]. Angew Chem Int Ed, 2023, 62(29): e202305942.

    [28] [28] ZENG M H, TAN Y X, HE Y P, et al. A porous 4-fold-interpenetrated chiral framework exhibiting vapochromism, single-crystal-to-singlecrystal solvent exchange, gas sorption, and a poisoning effect[J]. Inorg Chem, 2013, 52(5): 2353–2360.

    [29] [29] LU T B, LUCK R L. Interlocking frameworks. A consequence of enlarging spacers from 4-pyridinecarboxylate to 4-(4-pyridyl) benzoate[J]. Inorg Chim Acta, 2003, 351: 345–355.

    Tools

    Get Citation

    Copy Citation Text

    LIU Tao, YIN Zheng, KUANG Xiaojun, ZENG Minghua. Thermal Induced Crystallization and Structure Transformation of Metal–Organic Framework Glass Fabricated by Sequential Perturbation Method[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2566

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 24, 2024

    Accepted: --

    Published Online: Dec. 4, 2024

    The Author Email: Minghua ZENG (zmh@mailbox.gxnu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240145

    Topics