Laser Journal, Volume. 45, Issue 11, 71(2024)
Object detection algorithm based on improved SSD
[1] [1] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [J]. Advances in neural information processing systems, 2012, 25: 1097-1105.
[2] [2] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proc-eedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
[3] [3] Girshick R. Fast R-CNN [C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
[4] [4] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]//Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence. Washington D. C., USA: IEEE Press, 2016:1137-1149.
[5] [5] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
[6] [6] Redmon J, Farhadi A. YOLO9000: better, faster, stronger [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.
[7] [7] Redmon J, Farhadi A. Yolov3: An incremental improvement [J]. arXiv preprint arXiv:1804.02767, 2018.
[8] [8] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]//Computer Vision - ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I 14. Springer International Publishing, 2016: 21-37.
[9] [9] Zhang X L, Xie H, Zhao Y J, et al. A fast SSD model based on parameter reduction and dilated convolution [J]. Journal of Real-Time Image Processing, 2021, 18: 2211-2224.
[10] [10] Yu X, Wu S, Lu X, et al. Adaptive multiscale feature for object detection [J]. Neurocomputing, 2021, 449: 146-158.
[11] [11] Tan M X, Pang R M, Le Q V. Efficientdet: Scalable and efficient object detection [C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10781-10790.
[12] [12] Chen P Y, Chang M C, Hsieh J W, et al. Parallel residual bi-fusion feature pyramid network for accurate single-shot object detection [J]. IEEE Transactions on Image Processing, 2021, 30: 9099-9111.
[15] [15] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions [J]. arXiv preprint arXiv:1511.07122, 2015.
[16] [16] Shi W Z, Caballero J, Huszr F, et al. Real-time single image and video super-resolution using an efficient subpixel convolutional neural network [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 1874-1883.
[17] [17] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
[18] [18] Li Z, Zhou F. FSSD: Feature fusion single shot multibox detector [J]. arXiv preprint arXiv:1712.00960, 2017.
[19] [19] Fu C Y, Liu W, Ranga A, et al. DSSD: Deconvolutional single shot detector [J]. arXiv preprint arXiv:1701.06659, 2017.
[20] [20] Zhai S P, Shang D R, Wang S H, et al. DF-SSD: An improved SSD object detection algorithm based on DenseNet and feature fusion [J]. IEEE Access, 2020, 8: 24344-24357.
Get Citation
Copy Citation Text
PENG Lincong, WANG Kerui, ZHOU Hao, LI Haiyan, YU Pengfei. Object detection algorithm based on improved SSD[J]. Laser Journal, 2024, 45(11): 71
Category:
Received: Mar. 8, 2024
Accepted: Jan. 17, 2025
Published Online: Jan. 17, 2025
The Author Email: Pengfei YU (pfyu@ynu.edu.cn)