Optoelectronics Letters, Volume. 21, Issue 3, 167(2025)

Design and test of cesium atomic concentration detection system based on TDLAS

Lizhen LIANG, Shanhu LIU, Yong WU, Jianglong WEI, and Yahong XIE
References(15)

[1] [1] FANTZ U, WIMMER C, NNBI Team. Quantification of cesium in negative hydrogen ion sources by laser absorption spectroscopy[J]. AIP conference proceedings, 2011, 1390(1): 348-358.

[2] [2] FANTZ U, WIMMER C. Optimizing the laser absorption technique for quantification of Caesium densities in negative hydrogen ion sources[J]. Journal of physics D: applied physics, 2011, 44(33): 335202.

[3] [3] LIU H Q, XU R, WANG Z X, et al. Near-infrared methane gas detection technology based on TDLAS with high sensitivity[J]. Acta photonica sinica, 2024: 1-8.

[4] [4] FENG Y N, LIU L F, LIANG S C, et al. Research and application of atmospheric trace CO monitoring based on TDLAS technology[J]. Journal of China University of Metrology, 2023, 34(03): 379-388.

[5] [5] YAO S C, GUO S J, YANG Y, et al. Research and application of flue gas ammonia slip detection based on tunable diode laser absorption spectroscopy (invited)[J]. Acta photonica sinica, 2023, 52(03): 11-24.

[6] [6] LI C C, CAO W, WAN Y, et al. Detection of low-concentration acetylene based on tunable diode laser absorption[J]. China measurement & test, 2024: 1-6.

[7] [7] ZHOU Z, CHENG Y, YIN S F, et al. Simulation analysis and experimental study of high precision laser methane telemetry parameters for non-cooperative target[J]. Journal of optoelectronics·laser, 2023, 34(08): 861-871. (in Chinese)

[8] [8] YANG S H, QIAO S D, LIN D Y, et al. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese optics, 2023, 16(01): 151-157.

[9] [9] CAO W, WAN Y, LI C C, et al. Design of carbon monoxide detection system based on TDLAS[J]. China measurement & test, 2023, 49(S1): 215-219.

[10] [10] ALCOCK C B, ITKIN V P, HORRIGAN M K. Vapour pressure equations for the metallic elements: 298-2500K[J]. Canadian metallurgical quarterly, 1984, 23(3): 309-313.

[11] [11] FRIEDL R, FANTZ U. Fundamental studies on the Cs dynamics under ion source conditions[J]. Review of scientific instruments, 2014, 85(2): 02b109.

[12] [12] FANTZ U, GUTSER R, WIMMER C. Fundamental experiments on evaporation of cesium in ion sources[J]. Review of scientific instruments, 2010, 81(2): 02B102.

[13] [13] FANTZ U, FRIEDL R, FRSCHLE M. Controllable evaporation of cesium from a dispenser oven[J]. Review of scientific instruments, 2012, 83(12): 123305.

[14] [14] WIMMER C, MIMO A, LINDAUER M, et al. Improved understanding of the Cs dynamics in large H- sources by combining TDLAS measurements and modeling[J]. AIP conference proceedings, 2018, 2011(1): 060001.

[15] [15] MILLER R R, EWING C T, SPANN J R, et al. Pressure-volume-temperature relations for cesium vapor[J]. Journal of chemical & engineering data, 1971, 16(1): 27-30.

Tools

Get Citation

Copy Citation Text

LIANG Lizhen, LIU Shanhu, WU Yong, WEI Jianglong, XIE Yahong. Design and test of cesium atomic concentration detection system based on TDLAS[J]. Optoelectronics Letters, 2025, 21(3): 167

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Received: Dec. 28, 2023

Accepted: Jan. 24, 2025

Published Online: Jan. 24, 2025

The Author Email:

DOI:10.1007/s11801-025-3294-7

Topics