Optics and Precision Engineering, Volume. 30, Issue 22, 2860(2022)

Design of 19-core photonic crystal fiber with low loss dispersion compensation in C + L band

Yajie WANG, Shanglin HOU*, and Jingli LEI
Author Affiliations
  • School of Science, Lanzhou University of Technology, Lanzhou730050, China
  • show less
    References(29)

    [1] D Y QIAN, M F HUANG et al. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C- and L-bands. Journal of Lightwave Technology, 30, 1540-1548(2012).

    [2] D J RICHARDSON, J M FINI, L E NELSON. Space-division multiplexing in optical fibres. Nature Photonics, 7, 354-362(2013).

    [3] T SAKAMOTO, K SAITOH, N HANZAWA et al. Crosstalk suppressed hole-assisted 6-core fiber with cladding diameter of 125 μm, 1-3(2013).

    [4] X Q XIE, J J TU, X ZHOU et al. Design and optimization of 32-core rod/trench assisted square-lattice structured single-mode multi-core fiber. Optics Express, 25, 5119-5132(2017).

    [5] Y H XIE, L PEI, J B SUN et al. Optimal design of a bend-insensitive heterogeneous MCF with differential inner-cladding structure and identical cores. Optical Fiber Technology, 53, 102001(2019).

    [6] S SHAHEEN, I GRIS-SÁNCHEZ, I GASULLA. True-time delay line based on dispersion-flattened 19-core photonic crystal fiber. Journal of Lightwave Technology, 38, 6237-6246(2020).

    [7] P RUSSELL. Photonic crystal fibers. Science, 299, 358-362(2003).

    [8] L P SHEN, W P HUANG, S S JIAN. Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology, 21, 1644-1651(2003).

    [9] Y J ZHANG, S G YANG, S Z XIE et al. Dispersion-compensating photonic crystal fibers with special characteristics. Microwave and Optical Technology Letters, 50, 1073-1078(2008).

    [10] X T ZHAO. Characteristics of a large negative dispersion and low confinement losses PCF. Semiconductor Optoelectronics, 29, 741-744(2008).

    [11] [11] 11奚小明, 陈子伦, 刘诗尧, 等. 光子晶体光纤与普通光纤的耦合熔接[J]. 激光技术, 2011(2): 202-205. doi: 10.3969/j.issn.1001-3806.2011.02.017XIX M, CHENZ L, LIUSH Y, et al. Coupling and fusion splicing of photonic crystal fibers with conventional fibers[J]. Laser Technology, 2011(2): 202-205.(in Chinese). doi: 10.3969/j.issn.1001-3806.2011.02.017

    [12] L M XIAO, M S DEMOKAN, W JIN et al. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect. Journal of Lightwave Technology, 25, 3563-3574(2007).

    [13] X M XI, Z L CHEN, G L SUN et al. Fusion splicing of small solid core photonic crystal fibers with conventional fibers based on controlled hole collapse. Chinese Journal of Lasers, 38(2011).

    [14] [14] 14侯尚林, 韩佳巍. 一种新的低非线性宽带色散补偿微结构光纤的设计[J]. 发光学报, 2009, 30(6): 882-887.HOUSH L, HANJ W. Design of a novel microstructure fiber with broadband dispersion compensation and low nonlinearity[J]. Chinese Journal of Luminescence, 2009, 30(6): 882-887.(in Chinese)

    [15] G PRABHAKAR, A PEER, V RASTOGI et al. Large-effective-area dispersion-compensating fiber design based on dual-core microstructure. Applied Optics, 52, 4505(2013).

    [16] S M H ABDELAAL, B M YOUNIS, S S A OBAYYA et al. Highly negative dispersion dual-core liquid crystal photonic crystal fiber. Optical Fiber Technology, 60, 102330(2020).

    [17] I H MALITSON. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 55, 1205(1965).

    [18] P E CIDDOR. Refractive index of air: new equations for the visible and near infrared. Applied Optics, 35, 1566-1573(1996).

    [19] Z DE SHENG, D X YI, W G ZHANG et al. Studies on the dispersion in photonic crystal fiber using the step effective index model. Acta Physica Sinica, 54, 1235(2005).

    [20] N CHEN, X D ZHANG, F K NIE et al. Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure. Journal of Modern Optics, 65, 1459-1465(2018).

    [21] F H YE, J J TU, K SAITOH et al. Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers. Optics Express, 22, 23007-23018(2014).

    [22] K SAITOH, S MATSUO. Multicore fiber technology. Journal of Lightwave Technology, 34, 55-66(2016).

    [23] Y H XIE, L PEI, J J ZHENG et al. Impact analysis of a dense hole-assisted structure on crosstalk and bending loss in homogeneous few-mode multi-core fibers. Optics Express, 28, 23806-23819(2020).

    [24] M J LI, X CHEN, A P LIU et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers. Journal of Lightwave Technology, 27, 3010-3016(2009).

    [25] K NAGANO, S KAWAKAMI, S NISHIDA. Change of the refractive index in an optical fiber due to external forces. Applied Optics, 17, 2080-2085(1978).

    [26] K IMAMURA, Y TSUCHIDA, K MUKASA et al. Investigation on multi-core fibers with large Aeff and low micro bending loss. Optics Express, 19, 10595-10603(2011).

    [27] I ISHIDA, T AKAMATSU, Z WANG et al. Possibility of stack and draw process as fabrication technology for multi-core fiber, 1-3(2013).

    [28] [28] 28闫志伟. 利用堆积法制备光子晶体光纤的工艺研究[D]. 秦皇岛: 燕山大学, 2010.YANZ W. The Research on Technology of Fabricating Photonic Crystal Fibers using the Accumulation[D]. Qinhuangdao: Yanshan University, 2010. (in Chinese)

    [29] P Q ZHANG, J ZHANG, P L YANG et al. Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Optical Fiber Technology, 26, 176-179(2015).

    Tools

    Get Citation

    Copy Citation Text

    Yajie WANG, Shanglin HOU, Jingli LEI. Design of 19-core photonic crystal fiber with low loss dispersion compensation in C + L band[J]. Optics and Precision Engineering, 2022, 30(22): 2860

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Modern Applied Optics

    Received: Apr. 11, 2022

    Accepted: --

    Published Online: Nov. 28, 2022

    The Author Email: HOU Shanglin (houshanglin@vip.163.com)

    DOI:10.37188/OPE.20223022.2860

    Topics