Journal of Synthetic Crystals, Volume. 53, Issue 12, 2104(2024)

Theoretical Study of the Structure, Electronic and Optical Properties of 4H-SiC under High Pressure

ZHANG Pan1... PANG Guowang1, YIN Wei2, MA Yabin1, ZHANG Junzhou3, YANG Huihui4 and QIN Yanjun1,* |Show fewer author(s)
Author Affiliations
  • 1School of Science, Xinjiang Institute of Technology, Aksu 843100, China
  • 2School of Electrical and Mechanical Engineering, Xinjiang Institute of Technology, Aksu 843100, China
  • 3School of Energy and Chemical Engineering, Xinjiang University of Technology, Aksu 843100, China
  • 4School of Science, Xi’an Aeronautical University, Xi’an 710000, China
  • show less
    References(46)

    [1] [1] ZHANG B, HE S, YANG Q X, et al. Femtosecond laser modification of 6H-SiC crystals for waveguide devices[J]. Applied Physics Letters, 2020, 116(11): 111903.

    [2] [2] RAJAVEL MUTHAIAH V M, MEKA S R, VENKATA MANOJ KUMAR B. Processing of heat-treated silicon carbide-reinforced aluminum alloy composites[J]. Materials and Manufacturing Processes, 2019, 34(3): 312-320.

    [3] [3] MANJU M S, AJITH K M, VALSAKUMAR M C. Strain induced anisotropic mechanical and electronic properties of 2D-SiC[J]. Mechanics of Materials, 2018, 120: 43-52.

    [4] [4] LANGENDERFER M J, FAHRENHOLTZ W G, CHERTOPALOV S, et al. Detonation synthesis of silicon carbide nanoparticles[J]. Ceramics International, 2020, 46(5): 6951-6954.

    [5] [5] ZHENG X H, CHEN X B, ZHANG L, et al. Perfect spin and valley polarized quantum transport in twisted SiC nanoribbons[J]. 2D Materials, 2017, 4(2): 025013.

    [6] [6] WEITZEL C E, PALMOUR J W, CARTER C H, et al. Silicon carbide high-power devices[J]. IEEE Transactions on Electron Devices, 1996, 43(10): 1732-1741.

    [7] [7] LEE W H, YAO X H. First principle investigation of phase transition and thermodynamic properties of SiC[J]. Computational Materials Science, 2015, 106: 76-82.

    [8] [8] LI W H, HAHN E N, BRANICIO P S, et al. Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression[J]. International Journal of Plasticity, 2021, 138: 102923.

    [9] [9] FENG L X, LI W H, HAHN E N, et al. Structural phase transition and amorphization in hexagonal SiC subjected to dynamic loading[J]. Mechanics of Materials, 2022, 164: 104139.

    [10] [10] YAN W J, QIN X M, ZHANG Z Z, et al. Evolution of microstructure during rapid solidification of SiC under high pressure[J]. Advances in Condensed Matter Physics, 2022, 2022: 7823211.

    [11] [11] WU Z H, LIU W D, ZHANG L C, et al. Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC[J]. Acta Materialia, 2020, 182: 60-67.

    [12] [12] MAJID A, FATIMA S A, KHAN S U D, et al. Assessment of 2H-SiC based intercalation compound for use as anode in lithium ion batteries[J]. Ceramics International, 2020, 46(4): 5297-5305.

    [13] [13] MAJID A, HUSSAIN K, KHAN S U D, et al. First principles study of SiC as the anode in sodium ion batteries[J]. New Journal of Chemistry, 2020, 44(21): 8910-8921.

    [14] [14] NGUYEN T K, PHAN H P, DINH T, et al. Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures[J]. Materials & Design, 2018, 156: 441-445.

    [15] [15] ZHANG L, WANG Y, LV J, et al. Materials discovery at high pressures[J]. Nature Reviews Materials, 2017, 2(4): 1-16.

    [16] [16] TETER D M. Computational alchemy: the search for new superhard materials[J]. MRS Bulletin, 1998, 23(1): 22-27.

    [17] [17] KIDOKORO Y, UMEMOTO K, HIROSE K, et al. Phase transition in SiC from zinc-blende to rock-salt structure and implications for carbon-rich extrasolar planets[J]. American Mineralogist, 2017, 102(11): 2230-2234.

    [18] [18] KIRSCHMAN R. Status of silicon carbide (SiC) as a wide bandgap semiconductor for high temperature applications: a review[J]. High-Temperature Electronics, 2009: 511-524.

    [19] [19] YOSHIDA M, ONODERA A, UENO M, et al. Pressure-induced phase transition in SiC[J]. Physical Review B, 1993, 48(14): 10587-10590.

    [20] [20] SEKINE T, KOBAYASHI T. Shock compression of 6H polytype SiC to 160 GPa[J]. Physical Review B, 1997, 55(13): 8034-8037.

    [21] [21] DAVIAU K, LEE K K M. Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell[J]. Physical Review B, 2017, 95(13): 134108.

    [22] [22] NISR C, MENG Y, MACDOWELL A A, et al. Thermal expansion of SiC at high pressure-temperature and implications for thermal convection in the deep interiors of carbide exoplanets[J]. Journal of Geophysical Research: Planets, 2017, 122(1): 124-133.

    [23] [23] TRACY S J, SMITH R F, WICKS J K, et al. Insitu observation of a phase transition in silicon carbide under shock compression using pulsed X-ray diffraction[J]. Physical Review B, 2019, 99(21): 214106.

    [24] [24] CHANG K J, COHEN M L. Ab initio pseudopotential study of structural and high-pressure properties of SiC[J]. Physical Review B, 1987, 35(15): 8196-8201.

    [25] [25] CATTI M. Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure[J]. Physical Review Letters, 2001, 87(3): 035504.

    [26] [26] MIAO M S, LAMBRECHT W R L. Unified path for high-pressure transitions of SiC polytypes to the rocksalt structure[J]. Physical Review B, 2003, 68(9): 092103.

    [27] [27] DURANDURDU M. Pressure-induced phase transition of SiC[J]. Journal of Physics: Condensed Matter, 2004, 16(25): 4411-4417.

    [28] [28] MIAO M S, LAMBRECHT W R L. Universal transition state for high-pressure zinc blende to rocksalt phase transitions[J]. Physical Review Letters, 2005, 94(22): 225501.

    [29] [29] DURANDURDU M. Ab initiosimulations of the structural phase transformation of 2H-SiC at high pressure[J]. Physical Review B, 2007, 75(23): 235204.

    [30] [30] EKER S, DURANDURDU M. Phase transformation of 6H-SiC at high pressure: an ab initio constant-pressure study[J]. EPL (Europhysics Letters), 2008, 84(2): 26003.

    [31] [31] SALVAD M A, FRANCO R, PERTIERRA P, et al. Hysteresis and bonding reconstruction in the pressure-induced B3-B1 phase transition of 3C-SiC[J]. Physical Chemistry Chemical Physics, 2017, 19(34): 22887-22894.

    [32] [32] ZHU B, ZHAO D, ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International, 2019, 45(4): 5150-5157.

    [33] [33] RAN Z, ZOU C M, WEI Z J, et al. Phase transitions and elastic anisotropies of SiC polymorphs under high pressure[J]. Ceramics International, 2021, 47(5): 6187-6200.

    [34] [34] LU Y P, HE D W, ZHU J, et al. First-principles study of pressure-induced phase transition in silicon carbide[J]. Physica B: Condensed Matter, 2008, 403(19/20): 3543-3546.

    [35] [35] SHIMOJO F, KALIA R K, et al. Molecular dynamics simulation of structural transformation in silicon carbide under pressure[J]. Physical Review Letters, 2000, 84(15): 3338-3341.

    [36] [36] CATTI M. First-principles study of the orthorhombic mechanism for the B3/B1 high-pressure phase transition of ZnS[J]. Physical Review B, 2002, 65(22): 224115.

    [38] [38] EKER S, DURANDURDU M. Pressure-induced phase transformation of 4H-SiC: an ab initio constant-pressure study[J]. Europhysics Letters, 2009, 87(3): 36001.

    [39] [39] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744.

    [40] [40] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Fr Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570.

    [41] [41] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data[J]. Physical Review Letters, 2009, 102(7): 073005.

    [42] [42] CHADI D J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747.

    [43] [43] SINRQUOTKO G V, SMIRNOV N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure[J]. Journal of Physics: Condensed Matter, 2002, 14(29): 6989-7005.

    [45] [45] JIANG Z Y, XU X H, WU H S, et al. Ab initio calculation of SiC polytypes[J]. Solid State Communications, 2002, 123(6/7): 263-266.

    [46] [46] VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to Ⅲ-nitrides[J]. 2004, 95(8): 3851-3879.

    [47] [47] HARRIS G L. Properties of silicon carbide[M]. London: INSPEC, 1995.

    [48] [48] XU P S, XIE C K, PAN H B, et al. Theoretical study on the band structure and optical properties of 4H-SiC[J]. Chinese Physics, 2004, 13(12): 2126-2129.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Pan, PANG Guowang, YIN Wei, MA Yabin, ZHANG Junzhou, YANG Huihui, QIN Yanjun. Theoretical Study of the Structure, Electronic and Optical Properties of 4H-SiC under High Pressure[J]. Journal of Synthetic Crystals, 2024, 53(12): 2104

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 16, 2024

    Accepted: Jan. 10, 2025

    Published Online: Jan. 10, 2025

    The Author Email: Yanjun QIN (qinyj123@163.com)

    DOI:

    CSTR:32186.14.

    Topics