Acta Photonica Sinica, Volume. 53, Issue 1, 0114002(2024)

Single-frequency Nd∶YAG Pulsed Laser at 1 116 nm

Xiaoyue DONG, Shuang LIU, Guojiang BI, Keqiang WANG*, and Xiaojie MAO
Author Affiliations
  • The 11th Institute of China Electronics Technology Group Corporation,Beijing 100015,China
  • show less
    References(20)

    [1] Jianyong DING, Guangli YU, Lei ZHANG et al. Research progress and application of all solid-state narrow-width single-frequency lasers, 142-150(2018).

    [2] Jiangxiong LONG, Gang LI, Bin YANG et al. Research progress of seed-injected all-solid-state single-frequency pulsed lasers. Laser & Optoelectronics Progress, 55, 7-14(2018).

    [3] B ED. An introduction to pound-drever-hall laser frequency stabilization. American Journal of Physics, 69, 79-87(2001).

    [4] K NICKLAUS, V MORASCH, M HOEFER et al. Frequency stabilization of Q-switched Nd∶YAG oscillators for airborne and spaceborne lidar systems, 6451(2007).

    [5] F E HOVIS, J EDELMAN, T SCHUM et al. Recent progress on single frequency lasers for space and high altitude aircraft applications, 68710E(2008).

    [6] C LEMMERZ, O LUX, O REITEBUCH et al. Frequency and timing stability of an airborne injection-seeded Nd∶YAG laser system for direct-detection wind lidar. Applied Optics, 56, 9057-9068(2017).

    [7] Xinzhao CHU, Weilin PAN, G PAPEN et al. Fe Boltzmann temperature lidar: design, error analysis, and initial results at the North and South Poles. Applied Optics, 41, 4400-4410(2002).

    [8] J LAUTENBACH, J HÖFFNER. Scanning iron temperature lidar for mesopause temperature observation. Applied Optics, 43, 4559-4563(2004).

    [9] J LAUTENBACH, J HOEFFNER, P MENZEL et al. The new scanning iron lidar, current state and future developments, 590, 327-329(2005).

    [10] B KAIFLER, C BÜDENBENDER, P MAHNKE et al. Demonstration of an iron fluorescence lidar operating at 372 nm wavelength using a newly-developed Nd∶YAG laser. Optics Letters, 42, 2858-2861(2017).

    [11] Wenbin LIU, Di ZHANG, Jiang LI et al. High power single wavelength ceramic Nd∶YAG laser at 1116 nm. Optics and Laser Technology, 46, 139-141(2013).

    [12] Huanian ZHANG, Xiaohan CHEN, Qingpu WANG et al. Continuous-wave dual-wavelength Nd∶YAG ceramic laser at 1112 and 1116 nm. Chinese Physics Letters, 30, 94-96(2013).

    [14] W KOECHNER. Solid-state laser engineering, 78-94(2002).

    [15] T Y FAN, R L BYER. Diode laser-pumped solid-state lasers. Journal of Quantum Electronics, 24, 895-912(1988).

    [16] S SINGH, R G SMITH, U L G VAN. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature. Physical Review B, 10, 2566-2572(1974).

    [17] Shutao LI, Xingyu ZHANG, Qingpu WANG. Discussion on effective stimulated emission Cross sections for R2→Y3 transitions in Nd∶YAG crystals. Laser and Infrared, 34, 157-158(2004).

    [18] W F KRUPKE, M D SHINN, J E MARION et al. Spectroscopic, optical, and thermomechanical properties of neodymium-and chromium-doped gadolinium scandium gallium garnet. Journal of the Optical Society of America. B, 3, 102-114(1986).

    [19] V EVTUHOV, A E SIEGMAN. A twisted-mode technique for obtaining axially uniform energy density in a laser cavity. Applied Optics, 4, 142-143(1965).

    [20] Jun ZHOU. Study of injection-seeded single frequency all solid-state laser(2007).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoyue DONG, Shuang LIU, Guojiang BI, Keqiang WANG, Xiaojie MAO. Single-frequency Nd∶YAG Pulsed Laser at 1 116 nm[J]. Acta Photonica Sinica, 2024, 53(1): 0114002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 4, 2023

    Accepted: Aug. 16, 2023

    Published Online: Feb. 1, 2024

    The Author Email: WANG Keqiang (wkq519@139.com)

    DOI:10.3788/gzxb20245301.0114002

    Topics