Laser Journal, Volume. 45, Issue 3, 14(2024)

A review of research progress in weakly supervised semantic segmentation of 3D point clouds

WU Jie1, ZHANG Ansi1、*, LI Song1, ZHANG Bao2, and ZHANG Yizong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(48)

    [1] [1] Chen X, Gupta A. Webly supervised learning of convolu- tional networks[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1431-1439.

    [2] [2] Orsic M, Kreso I, Bevandic P , et al. In defen-se of pre- trained imagenet architectures for real -time semantic seg- mentation of road-driving ima-ges[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 12607-12616.

    [3] [3] Chen K, Pang J, Wang J, et al. Hybrid task cascade for instance segmentation[ C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 4974-4983.

    [4] [4] Goceri E, Gunay M. Future healthcare: will digital data lead to better care [ J ]. Proc. New Trends Issues Adv. Pure Appl. Sci, 2017: 7-11.

    [5] [5] Silberman N, Hoiem D, Kohli P , et al. Indoor segmenta- tion and support inference from rgbd images[C]//Computer Vision-ECCV 2012: 12th European Conference on Comput- er Vision, Florence, Italy, October 7-13, 2012, Proceed- ings, Part V 12. Springer, 2012: 746-760.

    [6] [6] Janoch A, Karayev S, Jia Y, et al. A category-level 3d object dataset : Putting the kinect to work[J]. Consumer Depth Cameras for Computer Vision: Research Topics and Applications, 2013: 141-165.

    [7] [7] Nguyen A , Le B. 3D point cloud segmentation : A survey [ C]//2013 6th IEEE conference on robotics , automation and mechatronics ( RAM) . IEEE , 2013 : 225-230.

    [8] [8] Zhou Z H. A brief introduction to weakly supervised learn- ing[J] . National science review , 2018 , 5(1) : 44-53.

    [9] [9] Armeni I , Sener O , Zamir A R , et al. 3d semantic parsing of large-scale indoor spaces[ C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016 : 1534- 1543.

    [10] [10] Dai A , Chang A X , Savva M , et al. Scannet : Richly-an- notated 3d reconstructions of indoor scenes[ C]//Proceed- ings of the IEEE conference on computer vision and pattern recognition. 2017 : 5828-5839.

    [11] [11] Hackel T , Savinov N , Ladicky L , et al. SEMANTIC3D. NET : A new large - scale point cloud classification bench- mark[ C]//ISPRS Annals of the Photogrammetry , Remote Sensing and Spatial Information Sciences. ISPRS Founda- tion , 2017 : 91-98.

    [12] [12] Li G , Choi B , Xu J , et al. Shapenet : A shapel-etneural network approach for multivariate time series classification [ C]//Proceedings of the AAAI conference on artificial in- telligence. 2021 : 8375- 8383.

    [13] [13] Yan X , Gao J , Zheng C , et al. 2dpass : 2d prio-rs assisted semantic segmentation on lidar pointclouds [ C]//European Conference on Computer Vi - sion. Springer , 2022 : 677 - 695.

    [14] [14] Deng J , Dong W , Socher R , et al. Imagenet : A large - scale hierarchical image database[ C]//2009 IEEE confer- ence on computer vision and pattern recognition. Ieee , 2009 : 248-255.

    [15] [15] Lin T Y , Maire M , Belongie S , et al. Microsof - t coco : Common objects in context[ C]//Compute-r Vision-ECCV 2014 : 13th European Conference , Zurich , Switzerland , September 6- 12 , 2014 , Proc-eedings , Part V 13. Spring- er , 2014 : 740-755.

    [16] [16] Hendrycks D , Lee K , Mazeika M. Using pre-tr-aining can improve model robustness and uncer-tainty[ C] // Interna- tional conference on machine learning. PMLR , 2019 : 2712 -2721.

    [17] [17] Xie S , Gu J , Guo D , et al. Pointcontrast : Unsupervised pre- training for 3d point cloud understanding [ C]//Com- puter Vision - ECCV 2020 : 16th European Conference , Glasgow , UK , August 23-28 , 2020 , Proceedings , Part III 16. Springer , 2020 : 574-591.

    [18] [18] Hou J , Graham B , Niessner M , et al. Explori-ng data-ef- ficient 3d scene understanding with c-ontrastive scene con- texts[ C] // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021 : 15587 -15597.

    [19] [19] Zhang Y , Li Z , Xie Y , et al. Weakly supervised semantic segmentation for large - scale point clou - d [ C]//Proceed- ings of the AAAI Conference on Ar - tificial Intelligence. 2021 : 3421-3429.

    [20] [20] Hu Q , Yang B , Fang G , et al. Sqn : Weakly-sup-ervised semantic segmentation of large-scale 3d point clouds[ C]// European Conference on Compu - ter Vision. Springer , 2022 : 600-619.

    [21] [21] Liu Z , Qi X , Fu C W. One thing one click : A self-train- ing approach for weakly supervised 3d semantic segmenta- tion [ C ]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021 : 1726 - 1736.

    [22] [22] Xu X , Lee G H. Weakly supervised semantic poi-nt cloud segmentation : Towards 10x fewer labels [ C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020 : 13706- 13715.

    [23] [23] Zhang Y , Qu Y , Xie Y , et al. Perturbed self-distillation : Weakly supervised large - scale point cloud semantic seg- mentation[ C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021 : 15520- 15528.

    [24] [24] Lee M S , Yang S W , Han S W. Gaia : Graphical informa- tion gain based attention network for weakly supervised point cloud semantic segmentati - on [ C ]//Proceedings of the IEEE/CVF Winter Conf-erence on Applications of Comput- er Vision. 2023 : 582-591.

    [25] [25] Lee D H , Others. Pseudo-label : The simple and efficient semi-supervised learning method for deep neural networks [ C]//Workshop on challenges in representation learning , ICML. 2013 : 896.

    [26] [26] Yang X , Song Z , King I , et al. A survey on deep semi-su- pervised learning[J] . IEEE Transactions on Knowledge and Data Engineering , 2022 :373-440

    [27] [27] Wei J , Lin G , Yap K H , et al. Multi-path region mining for weakly supervised 3d semantic segm - entation on point clouds[ C]//Proceedings of the IEEE/CVF conference on computer vision and pa - ttern recognition. 2020 : 4384 - 4393.

    [28] [28] Zhou B , Khosla A , Lapedriza A , et al. Learni - ng deep features for discriminative localization[ C]//Proceedings of the IEEE conference on compu-ter vision and pattern recog- nition. 2016 : 2921-2929.

    [29] [29] Ren Z , Misra I , Schwing A G , et al. 3d spati-al recogni- tion without spatially labeled 3d[ C]//Pr -oceedings of the IEEE/CVF Conference on Comp - uter Vision and Pattern Recognition. 2021 : 13204- 13213.

    [30] [30] Li H , Sun Z , Wu Y , et al. Semi - supervised pointcloud segmentation using self-training with label confidence pre- diction[J] . Neurocomputing , 2021 , 437 : 227-237.

    [31] [31] Creswell A , White T , Dumoulin V , et al. Ge-nerative ad- versarial networks : An overview[J] . IE-EE signal process- ing magazine , 2018 ,35(1) : 53-65.

    [32] [32] Cheng M , Hui L , Xie J , et al. Sspc-net:Semi su-pervised semantic 3d point cloud segmentation network [ C]//Pro- ceedings of the AAAI conference on artificial intelligence. 2021 : 1140- 1147.

    [33] [33] Yin C , Yang B , Cheng J C , et al. Label-efficient semantic segmentation of large - scale industrial point clouds using weakly supervised learning [ J ] . Automation in Construc- tion , 2023 , 148 : 104757.

    [34] [34] Liu Z , Hu H , Cao Y , et al. A closer look at loc-al aggre- gation operators in point cloud analysis[ C]//Computer Vi- sion- ECCV 2020 : 16th European Conference , Glasgow , UK , August 23- 28 , 2020 , Proceedings , Part XXIII 16. Springer , 2020 : 326-342.

    [35] [35] Tang L , Hui L , Xie J. Learning Inter-Superpoint Affinity for Weakly Supervised 3D Instance Seg - mentation [ C]// Proceedings of the Asian Conferen-ce on Computer Vision. 2022 : 1282- 1297.

    [36] [36] Li M , Xie Y , Shen Y , et al. Hybridcr : Weakly su - per- vised 3d point cloud semantic segmentation via hybrid cont- rastive regularization[ C]//Proceedi-ngs of the IEEE/CVF conference on computer vi - sion and pattern recognition. 2022 : 14930- 14939.

    [37] [37] Wang C , Ma C , Zhu M , et al. Pointaugmenting : Cross - modal augmentation for 3d object detect-ion[ C]//Proceed- ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021 : 11794- 11803.

    [38] [38] Sohn K , Berthelot D , Carlini N , et al. Fixma-tch : Simpli- fying semi-supervised learning with co-nsistency and confi- dence[J] . Advances in neural information processing sys- tems , 2020 , 33 : 596-608.

    [39] [39] Wang P , Yao W. A new weakly supervised approach for ALS point cloud semantic segmentation[J] . ISPRS Journal of Photogrammetry and Remote Sensing , 2022 , 188 : 237 - 254.

    [40] [40] Qi C R , Su H , Mo K , et al. Pointnet : Deep lea-rning on point sets for 3d classification and seg-mentation[ C]//Pro-ceedings of the IEEE conferenc - e on computer vision and pattern recognition. 2017 : 652-660.

    [41] [41] Dong-Hyun Lee A. The simple and efficient sem - isuper- vised learning method for deep neural ne -tworks[ C]//IC- ML 2013 Workshop : Challenges in Representation Learn- ing. 2013 : 1-6.

    [42] [42] Wang H ,Rong X , Yang L , et al. Towards Weak-ly Super- vised Semantic Segmentation in 3D Gra - ph - Structured Point Clouds of Wild Scenes. [ C]// BMVC. 2019 : 284.

    [43] [43] CAN Y B , CHAITANYA K , MUSTAFA B , et al. Learning to segment medical images with scribble - supervision alone [ C]//Deep Learning in Medical Image Analysis and Multi- modal Learning for Clinical Decision Support : 4th Interna- tional Workshop , DLMIA 2018 , and 8th International Workshop , ML-CDS 2018 , Held in Conjunction with MIC- CAI 2018 , Granada , Spain , September 20 , 2018 , Pro- ceedings 4. Springer , 2018 : 236-244.

    [44] [44] Lee H , Jeong W K. Scribble2label : Scribble - supe -rvised cell segmentation via self-generating pseu - do -labels with consistency[ C]//Medical Image Co-mputing and Computer Assisted Intervention - MI - CCAI 2020 : 23rd International Conference , Lima , Peru , October 4 - 8 , 2020 , Proceed- ings , Part I 23. Springer , 2020 : 14-23.

    [45] [45] Lin D , Dai J ,Jia J , et al. Scribblesup : Scribble - su -per- vised convolutional networks for semantic se - gmentation [ C]//Proceedings of the IEEE conferen - ce on computer vision and pattern recognition. 2016 : 3159-3167.

    [46] [46] Unal O , Dai D , Van Gool L. Scribble-supervised lidar se- mantic segmentation [ C ]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022 : 2697-2707.

    [47] [47] Sanghi A. Info3d : Representation learning on 3d objects u- sing mutual information maximization and contrastive learn- ing [ C]//Computer Vision - ECCV 2020 : 16th European Conference , Glasgow , UK , August 23-28 , 2020 , Proceed- ings , Part XXIX 16. Springer , 2020 : 626-642.

    [48] [48] Zhang T , Xiong Y , Zhang J , et al. CommDGI : community detection oriented deep graph infomax[ C]//Proceedings of the 29th ACM international conference on information &knowledge management. 2020 : 1843- 1852.

    Tools

    Get Citation

    Copy Citation Text

    WU Jie, ZHANG Ansi, LI Song, ZHANG Bao, ZHANG Yizong. A review of research progress in weakly supervised semantic segmentation of 3D point clouds[J]. Laser Journal, 2024, 45(3): 14

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 11, 2023

    Accepted: --

    Published Online: Oct. 15, 2024

    The Author Email: Ansi ZHANG (zhangas@gzu.edu.cn)

    DOI:10.14016/j.cnki.jgzz.2024.03.014

    Topics