Infrared and Laser Engineering, Volume. 50, Issue 11, 20210619(2021)
Exciton-polaritons in Fabry-Pérot microcavity based on halide perovskites (Invited)
[1] K Huang. Lattice vibrations and optical waves in ionic crystals. Nature, 167, 779-780(1951).
[2] J J Hopfield. Theory of the contribution of excitons to the complex dielectric constant of crystals. Physical Review Letters, 1, 427-428(1958).
[3] C Weisbuch, M Nishioka, A Ishikawa, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Physical Review Letters, 69, 3314-3317(1992).
[4] J Kasprzak, M Richard, S Kundermann, et al. Bose-einstein condensation of exciton polaritons. Nature, 443, 409-414(2006).
[5] R Balili, V Hartwell, D Snoke, et al. Bose-einstein condensation of microcavity polaritons in a trap. Science, 316, 1007-1010(2007).
[6] S Zhang, Y G Zhong, F Yang, et al. Cavity engineering of two-dimensional perovskites and inherent light-matter interaction. Photonics Research, 8, A72-A90(2020).
[7] G Lerario, A Fieramosca, F Barachati, et al. Room-temperature superfluidity in a polariton condensate. Nature Physics, 13, 837-842(2017).
[8] L Dominici, G Dagvadorj, J M Fellows, et al. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Sci Adv, 1, e1500807(2015).
[9] S Zhang, J Chen, J Shi, et al. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity. ACS Photonics, 7, 327-337(2020).
[10] L Protesescu, S Yakunin, M I Bodnarchuk, et al. Nanocrystals of cesium lead halide perovskites (cspbx(3), x=cl, br, and i): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 15, 3692-3696(2015).
[11] Q Zhang, S T Ha, X Liu, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett, 14, 5995-6001(2014).
[12] J S Weiner, P Y Yu. Free carrier lifetime in semi-insulating gaas from time-resolved band-to-band photoluminescence. Journal of Applied Physics, 55, 3889-3891(1984).
[13] X H Zhao, M J DiNezza, S Liu, et al. Determination of cdte bulk carrier lifetime and interface recombination velocity of cdte/mgcdte double heterostructures grown by molecular beam epitaxy. Applied Physics Letters, 105, 252101(2014).
[14] Y Rosenwaks, Y Shapira, D Huppert. Metal reactivity effects on the surface recombination velocity at inp interfaces. Applied Physics Letters, 57, 2552-2554(1990).
[15] R K Ahrenkiel. Measurement of minority-carrier lifetime by time-resolved photoluminescence. Solid-State Electronics, 35, 239-250(1992).
[16] Q Zhang, R Su, X F Liu, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Advanced Functional Materials, 26, 6238-6245(2016).
[17] R Su, C Diederichs, J Wang, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 17, 3982-3988(2017).
[18] J Hu, L Yan, W You. Two-dimensional organic-inorganic hybrid perovskites: A new platform for optoelectronic applications. Adv Mater, 30, e1802041(2018).
[19] L Mao, C C Stoumpos, M G Kanatzidis. Two-dimensional hybrid halide perovskites: Principles and promises. J Am Chem Soc, 141, 1171-1190(2019).
[20] B Saparov, D B Mitzi. Organic-inorganic perovskites: Structural versatility for functional materials design. Chem Rev, 116, 4558-4596(2016).
[21] T Fujita, Y Sato, T Kuitani, et al. Tunable polariton absorption of distributed feedback microcavities at room temperature. Physical Review B, 57, 12428(1998).
[22] A Brehier, R Parashkov, J S Lauret, et al. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Applied Physics Letters, 89, 171110(2006).
[23] J Wenus, R Parashkov, S Ceccarelli, et al. Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity. Physical Review B, 74, 235212(2006).
[24] G Lanty, S Zhang, J S Lauret, et al. Hybrid cavity polaritons in a zno-perovskite microcavity. Physical Review B, 84, 195449(2011).
[25] A Fieramosca, Marco L De, M Passoni, et al. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photonics, 5, 4179-4185(2018).
[26] A Fieramosca, L Polimeno, V Ardizzone, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci Adv, 5, eaav9967(2019).
[27] L Polimeno, A Fieramosca, G Lerario, et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Advanced Optical Materials, 8, 2000176(2020).
[28] H Zhu, Y Fu, F Meng, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 14, 636-642(2015).
[29] H Zhou, S Yuan, X Wang, et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano, 11, 1189-1195(2017).
[30] K Park, J W Lee, J D Kim, et al. Light-matter interactions in cesium lead halide perovskite nanowire lasers. J Phys Chem Lett, 7, 3703-3710(2016).
[31] S Zhang, Q Y Shang, W N Du, et al. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/-nanowires. Advanced Optical Materials, 6, 1701032(2018).
[32] W N Du, S Zhang, J Shi, et al. Strong exciton-photon coupling and lasing behavior in all-inorganic cspbbr3 micro/nanowire fabry-perot cavity. ACS Photonics, 5, 2051-2059(2018).
[33] Q Shang, C Li, S Zhang, et al. Enhanced optical absorption and slowed light of reduced-dimensional cspbbr3 nanowire crystal by exciton-polariton. Nano Lett, 20, 1023-1032(2020).
[34] T J S Evans, A Schlaus, Y Fu, et al. Continuous‐wave lasing in cesium lead bromide perovskite nanowires. Advanced Optical Materials, 6, 1700982(2017).
[35] Q Shang, M Li, L Zhao, et al. Role of the exciton-polariton in a continuous-wave optically pumped cspbbr3 perovskite laser. Nano Lett, 20, 6636-6643(2020).
[36] R Su, J Wang, J Zhao, et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci Adv, 4, eaau0244(2018).
[37] R Su, S Ghosh, J Wang, et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nature Physics, 16, 301-306(2020).
[38] J Wang, H Xu, R Su, et al. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light Sci Appl, 10, 45(2021).
[39] R Su, S Ghosh, T C H Liew, et al. Optical switching of topological phase in a perovskite polariton lattice. Sci Adv, 7, eabf8049(2021).
[40] J J Baumberg, P G Savvidis, R M Stevenson, et al. Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation. Physical Review B, 62, 16247-16250(2000).
[41] P G Savvidis, J J Baumberg, R M Stevenson, et al. Angle-resonant stimulated polariton amplifier. Phys Rev Lett, 84, 1547-1550(2000).
[42] J Wu, S Ghosh, R Su, et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett, 21, 3120-3126(2021).
[43] Q Fan, G V Biesold-McGee, J Ma, et al. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew Chem Int Ed Engl, 59, 1030-1046(2020).
[44] X Li, J M Hoffman, M G Kanatzidis. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem Rev, 121, 2230-2291(2021).
[45] X Wang, M Shoaib, X Wang, et al. High-quality in-plane aligned cspbx3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling. ACS Nano, 12, 6170-6178(2018).
[46] C Tian, T Guo, S Q Zhao, et al. Low-threshold room-temperature continuous-wave optical lasing of single-crystalline perovskite in a distributed reflector microcavity. RSC Advances, 9, 35984-35989(2019).
[47] X Zhang, H Shi, H Dai, et al. Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet. ACS Appl Mater Interfaces, 12, 5081-5089(2020).
[48] J Wang, R Su, J Xing, et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano, 12, 8382-8389(2018).
[49] P Bouteyre, Nguyen H Son, J S Lauret, et al. Directing random lasing emission using cavity exciton-polaritons. Opt Express, 28, 39739-39749(2020).
[50] W Bao, X Liu, F Xue, et al. Observation of rydberg exciton polaritons and their condensate in a perovskite cavity. Proc Natl Acad Sci U S A, 116, 20274-20279(2019).
[51] N H M Dang, D Gerace, E Drouard, et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett, 20, 2113-2119(2020).
Get Citation
Copy Citation Text
Zhuoya Zhu, Shuai Zhang, Wenna Du, Qing Zhang, Xinfeng Liu. Exciton-polaritons in Fabry-Pérot microcavity based on halide perovskites (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210619
Category: Special issue-Advanced technology of microcavity photonics materials and devices
Received: Aug. 27, 2021
Accepted: --
Published Online: Dec. 7, 2021
The Author Email: Du Wenna (duwn@nanoctr.cn)