Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1314004(2023)

Influence of Cr Content on the Microstructure and Properties of Laser Powder Bed Fusion FeCr Alloy

Hao Zhang1,2,3, Yaqing Hou2, Yazhou He1,2, Haohao Kong1,2, Fafa Li2, and Hang Su2、*
Author Affiliations
  • 1Central Iron & Steel Research Institute, Beijing 100081, China
  • 2Material Digital R & D Center, CISRI Group, Beijing 100081, China
  • 3Andron (Chongqing) Material Technology Co., Ltd., Chongqing 401329, China
  • show less
    References(35)

    [1] Boes J, Röttger A, Becker L et al. Processing of gas-nitrided AISI 316L steel powder by laser powder bed fusion-microstructure and properties[J]. Additive Manufacturing, 30, 100836(2019).

    [2] Wang Y M, Voisin T, McKeown J T et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials, 17, 63-71(2018).

    [3] Fang L J, Sun B B, Zhang Q et al. Structural design and analysis of selective laser melting forming parts[J]. Laser & Optoelectronics Progress, 60, 0514010(2023).

    [4] Chen R P, Zhang D Y, Hu S T et al. Compressive properties and numerical simulation of porous structure fabricated by laser powder bed fusion[J]. Laser & Optoelectronics Progress, 58, 1714006(2021).

    [5] DebRoy T, Mukherjee T, Milewski J O et al. Scientific, technological and economic issues in metal printing and their solutions[J]. Nature Materials, 18, 1026-1032(2019).

    [6] Lindström T, Ewest D, Simonsson K et al. Constitutive model of an additively manufactured ductile nickel-based superalloy undergoing cyclic plasticity[J]. International Journal of Plasticity, 132, 102752(2020).

    [7] Martin J H, Yahata B D, Hundley J M et al. 3D printing of high-strength aluminium alloys[J]. Nature, 549, 365-369(2017).

    [8] Gu D D, Shi X Y, Poprawe R et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 372, eabg1487(2021).

    [9] Brodie E G, Medvedev A E, Frith J E et al. Remelt processing and microstructure of selective laser melted Ti25Ta[J]. Journal of Alloys and Compounds, 820, 153082(2020).

    [10] Dong Y P, Li Y L, Zhou S Y et al. Cost-affordable Ti-6Al-4V for additive manufacturing: powder modification, compositional modulation and laser in situ alloying[J]. Additive Manufacturing, 37, 101699(2021).

    [11] Duan R X, Li S, Cai B et al. In situ alloying based laser powder bed fusion processing of β Ti-Mo alloy to fabricate functionally graded composites[J]. Composites Part B: Engineering, 222, 109059(2021).

    [12] Huang S, Narayan R L, Tan J H K et al. Resolving the porosity-unmelted inclusion dilemma during in-situ alloying of Ti34Nb via laser powder bed fusion[J]. Acta Materialia, 204, 116522(2021).

    [13] Wang H, Luo H L, Chen J Q et al. Cost-affordable, biomedical Ti-5Fe alloy developed using elemental powders and laser in situ alloying additive manufacturing[J]. Materials Characterization, 182, 111526(2021).

    [14] Wang J C, Liu Y J, Liang S X et al. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder[J]. Journal of Materials Science & Technology, 105, 1-16(2022).

    [15] Ewald S, Kies F, Hermsen S et al. Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion[J]. Materials, 12, 1706(2019).

    [16] Chen P, Li S, Zhou Y H et al. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in situ alloying[J]. Journal of Materials Science & Technology, 43, 40-43(2020).

    [17] Lin D Y, Xu L Y, Li X J et al. A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting[J]. Additive Manufacturing, 35, 101340(2020).

    [18] Hou Y Q, Su H, Zhang H et al. Fabricating homogeneous FeCoCrNi high-entropy alloys via SLM in situ alloying[J]. Metals, 11, 942(2021).

    [19] Bosio F, Manfredi D, Lombardi M. Homogenization of an Al alloy processed by laser powder bed fusion in situ alloying[J]. Journal of Alloys and Compounds, 904, 164079(2022).

    [20] Skelton J M, Sullivan E J, Fitz-Gerald J M et al. Efficacy of elemental mixing of in situ alloyed Al-33wt%Cu during laser powder bed fusion[J]. Journal of Materials Processing Technology, 299, 117379(2022).

    [21] Zhang H, Hou Y Q, Wang X D et al. In-situ alloying of 304L stainless steel by laser powder bed fusion[J]. Chinese Journal of Lasers, 50, 0402001(2023).

    [22] Shoji Aota L, Bajaj P, Zschommler Sandim H R et al. Laser Powder-bed fusion as an alloy development tool: parameter selection for in-situ alloying using elemental powders[J]. Materials, 13, 3922(2020).

    [23] He Y Z, Zhang H, Su H et al. In situ alloying of Fe-Cr-Co permanent magnet by selective laser melting of elemental iron, chromium and cobalt mixed powders[J]. Metals, 12, 1634(2022).

    [24] Lu R G, Zhang X Y, Cheng X et al. Microstructure formation and evolution mechanism of laser rapid melted nickel based alloy based on composition gradient[J]. Chinese Journal of Lasers, 50, 0402019(2023).

    [25] Nie J J, Wei L, Li D L et al. High-throughput characterization of microstructure and corrosion behavior of additively manufactured SS316L-SS431 graded material[J]. Additive Manufacturing, 35, 101295(2020).

    [26] Teh W H, Chaudhary V, Chen S L et al. High throughput multi-property evaluation of additively manufactured Co-Fe-Ni materials libraries[J]. Additive Manufacturing, 58, 102983(2022).

    [27] Yu M J, Wu C M, Feng A X et al. Microstructure and mechanical properties of 316L-IN625 gradient material prepared via laser deposition[J]. Chinese Journal of Lasers, 49, 0802007(2022).

    [28] Wang J, Wang Y C, Su Y T et al. Evaluation of in-situ alloyed Inconel 625 from elemental powders by laser directed energy deposition[J]. Materials Science and Engineering: A, 830, 142296(2022).

    [29] Li C Q, Hou Y Q, Su H et al. Diffusion dynamic analysis on selective laser melting process of Fe/Ni Powder[J]. Materials Reports, 34, 370-374(2020).

    [30] Ly S, Rubenchik A M, Khairallah S A et al. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing[J]. Scientific Reports, 7, 1-12(2017).

    [31] Yan F Y, Xiong W, Faierson E. Grain structure control of additively manufactured metallic materials[J]. Materials, 10, 1260(2017).

    [32] Nagase T, Hori T, Todai M et al. Additive manufacturing of dense components in beta‑titanium alloys with crystallographic texture from a mixture of pure metallic element powders[J]. Materials & Design, 173, 107771(2019).

    [33] Lejček P, Roudnická M, Čapek J et al. Selective laser melting of pure iron: multiscale characterization of hierarchical microstructure[J]. Materials Characterization, 154, 222-232(2019).

    [34] Zafari A, Xia K. Nano/ultrafine grained immiscible Fe-Cu alloy with ultrahigh strength produced by selective laser melting[J]. Materials Research Letters, 9, 247-254(2021).

    [35] Hansen N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 51, 801-806(2004).

    Tools

    Get Citation

    Copy Citation Text

    Hao Zhang, Yaqing Hou, Yazhou He, Haohao Kong, Fafa Li, Hang Su. Influence of Cr Content on the Microstructure and Properties of Laser Powder Bed Fusion FeCr Alloy[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1314004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Mar. 2, 2023

    Accepted: Apr. 10, 2023

    Published Online: Jul. 10, 2023

    The Author Email: Su Hang (hangsu@vip.sina.com)

    DOI:10.3788/LOP230764

    Topics