Laser Journal, Volume. 45, Issue 4, 16(2024)
Photonic crystal fibers and their applications in the terahertz band
[6] [6] Yang R, Xu Y, Pan Z, et al. Microsphere-based photoexcited efficient terahertz radiation at room temperature enhanced by Ag/PI/PMMA/ZnO circle hollow waveguide resonance[J]. Optical Materials, 2023, 137: 113507.
[7] [7] Iqbal N, Ahmad A, Aslam H I, et al. Characteristics of the SPP Modes in GOLD - filled Graphene Parallel Plate Waveguide[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2023, 19(1): 336-351
[8] [8] Ghazialsharif M, Dong J, Abbes A, et al. Broadband Terahertz Metal-Wire Signal Processors: A Review[J]. Photonics, 2023, 10(1): 48.
[9] [9] Nallappan K, Cao Y, Xu G, et al. Dispersion-limited versus power-limited terahertz communication links using solid core subwavelength dielectric fibers[J]. Photonics Research, 2020, 8(11): 1757-1775.
[10] [10] Gao W, Yu X, Fujita M, et al. Effective-medium-cladded dielectric waveguides for terahertz waves[J]. Optics express, 2019, 27(26): 38721-38734.
[11] [11] Qian Z, Yang W, Wu D, et al. Low-loss flexible terahertz photonic crystal fiber[J]. Optical Engineering, 2023, 62(2): 026103.
[12] [12] Tene T, Guevara M, Cevallos Y, et al. THz Surface Plasmons in Wide and Freestanding Graphene Nanoribbon Arrays[J]. Coatings, 2023, 13(1): 28.
[13] [13] Kai Zheng, Yufeng Yuan, Litao Zhao, et al. Ultra-compact, low-loss terahertz waveguide based on graphene plasmonic technology[J]. 2D Materials, 2020, 7(1): 015016.
[15] [15] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.
[16] [16] Birks T A, Roberts P J, Russell P S J, et al. Full 2D photonic band gaps in silica/air structures[J]. Electronics letters, 1995, 31(22): 1941-1943.
[17] [17] Monro T M, Ebendorff-Heidepriem H. Progress In Micro-structured Optical Fibers[J]. Annual Review of Materials Research, 2006, 36: 467-495.
[18] [18] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics letters, 1996, 21(19): 1547-1549.
[19] [19] Liu X, Luo W, Chen D, et al. High birefringence single-polarization composite structured anti-resonant fiber[J]. Results in Physics, 2023, 49: 106473.
[20] [20] Sardar M R, Faisal M, Ahmed K. Design and characterization of rectangular slotted porous core photonic crystal fiber for sensing CO2 gas[J]. Sensing and Bio - Sensing Research, 2020, 30: 100379.
[22] [22] Habib A, Anower S. Low loss highly birefringent porous core fiber for single mode terahertz wave guidance[J]. Current optics and photonics, 2018, 2(3): 215-220.
[23] [23] Nivedha S, Senthilnathan K. Design of a terahertz alcohol sensor using a steering - wheel microstructured photonic crystal fiber[J]. IETE Journal of Research, 2023, 69(1): 180-188.
[24] [24] Hossain M S, Faruq M O, Rana M M, et al. Sensitivity analysis for detecting chemicals by the optical chemical sensor based Photonic Crystal Fiber (PCF) in the Terahertz (THz) regime[J]. Physica Scripta, 2021, 96(12): 125121.
[25] [25] Zhang Y, Xue L, Qiao D, et al. Porous photonic-crystal fiber with near-zero ultra-flattened dispersion and high birefringence for polarization-maintaining terahertz transmission[J]. Optik, 2020, 207: 163817.
[26] [26] Paul B K, Ahmed K, Asaduzzaman S, et al. Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis[J]. Sensing and Bio-Sensing Research, 2017, 12: 36-42.
[29] [29] Yang T, Ding C, Ziolkowski R W, et al. An epsilon-nearzero (ENZ) based, ultra-wide bandwidth terahertz single-polarization single-mode photonic crystal fiber[J]. Journal of Lightwave Technology, 2020, 39(1): 223-232.
[31] [31] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1539.
[32] [32] Litchinitser N M, Abeeluck A K, Headley C, et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics letters, 2002, 27(18): 1592-1594.
[34] [34] Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 2002, 298(5592): 399-402.
[35] [35] Wang Y Y, Wheeler N V, Couny F, et al. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber[J]. Optics letters, 2011, 36(5): 669-671.
[36] [36] Ankan I M, Mollah M A, Sultana J, et al. Negative curvature hollow-core anti-resonant fiber for terahertz sensing[J]. Applied Optics, 2020, 59(28): 8519-8525.
[37] [37] Kolyadin A N, Kosolapov A F, Pryamikov A D, et al. Light transmission in negative curvature hollow core fiber in extremely high material loss region[J]. Optics express, 2013, 21(8): 9514-9519.
[38] [38] Gao S, Wang Y, Wang P. Silica-based nodeless hollow-core fiber for broadband mid-IR guidance[C]//Conference on Lasers and Electro-Optics, Pacific Rim. Optica Publishing Group, 2017: s2024.
[39] [39] Gao S, Wang Y, Liu X, et al. Nodeless hollow-core fiber for the visible spectral range[J]. Optics letters, 2017, 42(1): 61-64.
[40] [40] Gao S F, Wang Y Y, Ding W, et al. Hollow-core negative-curvature fiber for UV guidance[J]. Optics letters, 2018, 43(6): 1347-1350.
[44] [44] Hu D J J, Alagappan G, Yeo Y K, et al. Broadband transmission in hollow-core Bragg fibers with geometrically distributed multilayered cladding[J]. Optics Express, 2010, 18(18): 18671-18684.
[47] [47] Zheng J, Lei W, Qin Y, et al. Highly nonlinear dispersion-flattened high-index-core Bragg fibres for supercontinuum generation[J]. Journal of Modern Optics, 2019, 66(20): 2008-2014.
[50] [50] Cui W, Schiff-Kearn A W, Zhang E, et al. Broadband and tunable time-resolved THz system using argon-filled hollow-core photonic crystal fiber[J]. APL Photonics, 2018, 3(11): 111301.
[54] [54] Amini T, Jahangiri F. Regenerative terahertz wave parametric amplifier based on four-wave mixing in asynchronously pumped graphene oxide integrated TOPAS[J]. Optics Express, 2021, 29(21): 33053-33066.
[55] [55] Talataisong W, Gorecki J, Ismaeel R, et al. Singlemoded THz guidance in bendable TOPAS suspended-core fiber directly drawn from a 3D printer[J]. Scientific Reports, 2020, 10(1): 11045.
[56] [56] Woyessa G, Fasano A, Markos C, et al. Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing[J]. Optical Materials Express, 2017, 7(1): 286-295.
[57] [57] Jibon R H, Bulbul A A M, Nahid A A, et al. Design and numerical analysis of a photonic crystal fiber (PCF)-based flattened dispersion THz waveguide[J]. Optical Review, 2021, 28(5): 564-572.
[60] [60] Hossain M S, Hussain N, Hossain Z, et al. Performance analysis of alcohols sensing with optical sensor procedure using circular photonic crystal fiber (C-PCF) in the terahertz regime[J]. Sensing and Bio - Sensing Research, 2022, 35: 100469.
[62] [62] Chen A, Yu Z, Dai B, et al. Highly sensitive detection of refractive index and temperature based on liquid-filled Dshape PCF[J]. IEEE Photonics Technology Letters, 2021, 33(11): 529-532.
[63] [63] Shafkat A. Analysis of a gold coated plasmonic sensor based on a duplex core photonic crystal fiber[J]. Sensing and Bio-Sensing Research, 2020, 28: 100324.
[64] [64] Singh S, Chaudhary B, Upadhyay A, et al. A review on various sensing prospects of SPR based photonic crystal fibers[J]. Photonics and Nanostructures-Fundamentals and Applications, 2023, 54: 101119.
[65] [65] Liu S, Li L, Bai Z. Highly Sensitive Biosensor Based on Partially Immobilized Silver Nanopillars in the Terahertz Band[J]. Photonics, 2021, 8(10): 438.
[66] [66] Wang D, Zhang Y, Qi Y, et al. Tunable surface plasmon resonance sensor based on graphene-coated photonic crystal fiber in terahertz[J]. Applied Optics, 2022, 61(22): 6664-6670.
[67] [67] Liu S, Ma R, Li Y, et al. D-shaped surface plasmon resonance biosensor based on MoS2 in terahertz band[J]. Optical Fiber Technology, 2021, 66: 102631.
[71] [71] Kaur B, Kumar S, Kaushik B K. Advances in photonic crystal fiber: sensing and supercontinuum generation applications[J]. Optical Fiber Technology, 2022, 72: 102982.
Get Citation
Copy Citation Text
JIA Chunrong, ZHANG Qingyu, DI Zhigang, KONG Lingfeng, MENG Miao, SUN Shuosheng. Photonic crystal fibers and their applications in the terahertz band[J]. Laser Journal, 2024, 45(4): 16
Category:
Received: Sep. 17, 2023
Accepted: Nov. 26, 2024
Published Online: Nov. 26, 2024
The Author Email: Zhigang DI (dzg0512@126.com)