Acta Optica Sinica, Volume. 40, Issue 11, 1128001(2020)

Radiation Calibration and Ground Object Information Acquisition Based on High Spectral Imaging Lidar System

Liyong Qian1,2, Decheng Wu1, Xiaojun Zhou1, Liujun Zhong1, Wei Wei1, Wenju Wang1, Yingjian Wang1, Wei Gong3, and Dong Liu1,2、*
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 2University of Science and Technology of China, Hefei, Anhui 230026, China
  • 3State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei 430072, China
  • show less
    References(38)

    [1] Wang J, Yuan M, Chen N et al. Continuous tunable cavity Fabry-Perot interferometer by using potassium dideuterium phosphate with two ring electrodes[J]. Applied Optics, 58, 4425-4430(2019).

    [2] Pham T D, Xia J S, Ha N T et al. A review of remote sensing approaches for monitoring blue carbon ecosystems: mangroves, seagrasses and salt marshes during 2010—2018[J]. Sensors, 19, 1933(2019).

    [4] Dalponte M, Bruzzone L, Gianelle D. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 46, 1416-1427(2008).

    [5] Tyo J S, Goldstein D L, Chenault D B et al. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 45, 5453-5469(2006).

    [6] He L, Song X, Feng W et al. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data[J]. Remote Sensing of Environment, 174, 122-133(2016).

    [7] Cendrero-Mateo M P, Moran M S, Papuga S A et al. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments[J]. Journal of Experimental Botany, 67, 275-286(2016).

    [8] Gronwall C, Steinvall O, Gohler B et al. Active and passive imaging of clothes in the NIR and SWIR regions for reflectivity analysis[J]. Applied Optics, 55, 5292-5303(2016).

    [9] Mura M D, Prasad S, Pacifici F et al. Challenges and opportunities of multimodality and data fusion in remote sensing[J]. Proceedings of the IEEE, 103, 1585-1601(2015).

    [10] Lee Z, Shang S L, Du K P et al. Enhance field water-color measurements with a Secchi disk and its implication for fusion of active and passive ocean-color remote sensing[J]. Applied Optics, 57, 3463-3473(2018).

    [11] Hui Z Y, Wu B P, Hu Y J et al. Improved progressive morphological filter for digital terrain model generation from airborne lidar data[J]. Applied Optics, 56, 9359-9367(2017).

    [12] Saleh A, Aalto A, Ryczkowski P et al. Short-range supercontinuum-based lidar for temperature profiling[J]. Optics Letters, 44, 4223-4226(2019).

    [13] Heiskanen J, Adhikari H, Piiroinen R et al. Do airborne laser scanning biomass prediction models benefit from Landsat time series, hyperspectral data or forest classification in tropical mosaic landscapes?[J]. International Journal of Applied Earth Observation and Geoinformation, 81, 176-185(2019).

    [14] Chen B W, Shi S, Sun J et al. Hyperspectral lidar point cloud segmentation based on geometric and spectral information[J]. Optics Express, 27, 24043-24059(2019).

    [16] Lim K, Treitz P, Wulder M et al. LiDAR remote sensing of forest structure[J]. Progress in Physical Geography: Earth and Environment, 27, 88-106(2003).

    [17] Asner G P. Carnegie airborne observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems[J]. Journal of Applied Remote Sensing, 1, 013536(2007).

    [18] Dalponte M, Bruzzone L, Gianelle D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data[J]. Remote Sensing of Environment, 123, 258-270(2012).

    [19] Chen Y W, Raikkonen E, Kaasalainen S et al. Two-channel hyperspectral LiDAR with a supercontinuum laser source[J]. Sensors, 10, 7057-7066(2010).

    [20] Puttonen E, Suomalainen J, Hakala T et al. Tree species classification from fused active hyperspectral reflectance and LIDAR measurements[J]. Forest Ecology and Management, 260, 1843-1852(2010).

    [22] Du L, Gong W, Shi S et al. Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR[J]. International Journal of Applied Earth Observation and Geoinformation, 44, 136-143(2016).

    [23] Gong W, Sun J, Shi S et al. Investigating thepotential of using the spatial and spectral information of multispectral LiDAR for object classification[J]. Sensors, 15, 21989-22002(2015).

    [24] Belgiu M, Dragut L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31(2016).

    [26] Chen B W, Shi S, Gong W et al. Multispectral LiDAR point cloud classification: a two-step approach[J]. Remote Sensing, 9, 373(2017).

    [28] Wagner W, Ullrich A, Ducic V et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 60, 100-112(2006).

    [29] Brell M, Segl K, Guanter L et al. Hyperspectral and lidar intensity data fusion: a framework for the rigorous correction of illumination, anisotropic effects, and cross calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 2799-2810(2017).

    [30] Dery B, Buteau S, Simard J R et al. Spectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 48, 3580-3586(2010).

    [33] Cook B, Corp L, Nelson R et al. NASA goddard's LiDAR, hyperspectral and thermal (G-LiHT) airborne imager[J]. Remote Sensing, 5, 4045-4066(2013).

    [34] Kaasalainen S, Lindroos T, Hyyppa J. Toward hyperspectral lidar: measurement of spectral backscatter intensity with a supercontinuum laser source[J]. IEEE Geoscience and Remote Sensing Letters, 4, 211-215(2007).

    [35] Li W, Niu Z, Sun G et al. Deriving backscatter reflective factors from 32-channel full-waveform LiDAR data for the estimation of leaf biochemical contents[J]. Optics Express, 24, 4771-4785(2016).

    [36] National metrology technical committee of legal metrology administration,(2012).

    [38] Borraccino A, Courtney M, Wagner R. Generic methodology for field calibration of nacelle-based wind lidars[J]. Remote Sensing, 8, 907(2016).

    [39] Yamaguchi Y, Yamada Y, Ishii J. Supercontinuum-source-based facility for absolute calibration of radiation thermometers[J]. International Journal of Thermophysics, 36, 1825-1833(2015).

    Tools

    Get Citation

    Copy Citation Text

    Liyong Qian, Decheng Wu, Xiaojun Zhou, Liujun Zhong, Wei Wei, Wenju Wang, Yingjian Wang, Wei Gong, Dong Liu. Radiation Calibration and Ground Object Information Acquisition Based on High Spectral Imaging Lidar System[J]. Acta Optica Sinica, 2020, 40(11): 1128001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 9, 2020

    Accepted: Feb. 27, 2020

    Published Online: Jun. 10, 2020

    The Author Email: Liu Dong (dliu@aiofm.ac.cn)

    DOI:10.3788/AOS202040.1128001

    Topics