Laser & Optoelectronics Progress, Volume. 61, Issue 2, 0211007(2024)

Review of Methods for Enhancing Measurement and Computation Speeds in Computational Optical Imaging Systems (Invited)

Zhengjun Liu1、**, Xuyang Zhou1、*, Xiu Wen2, Yutong Li1, and Shutian Liu1
Author Affiliations
  • 1School of Physics, Harbin Institute of Technology, Harbin 150001, Heilongjiang , China
  • 2School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
  • show less
    References(118)

    [1] Kong X Y, Xiao K, Wang K W et al. Phase microscopy using band-limited image and its Fourier transform constraints[J]. Optics Letters, 48, 3251-3254(2023).

    [2] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [3] Song S, Kim J, Hur S et al. Large-area, high-resolution birefringence imaging with polarization-sensitive Fourier ptychographic microscopy[J]. ACS Photonics, 8, 158-165(2021).

    [4] Lee K C, Lee K, Jung J et al. A smartphone-based Fourier ptychographic microscope using the display screen for illumination[J]. ACS Photonics, 8, 1307-1315(2021).

    [5] Ma X, Yao M H, Zhang Z B et al. Computational oblique illumination microscopy with isotropic high resolution[J]. IEEE Transactions on Computational Imaging, 6, 317-327(2020).

    [6] Bianco V, Mandracchia B, Běhal J et al. Miscalibration-tolerant Fourier ptychography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 7500417(2021).

    [7] Bian L H, Zheng G, Guo K K et al. Motion-corrected Fourier ptychography[J]. Biomedical Optics Express, 7, 4543-4553(2016).

    [8] Zheng C J, Zhang S H, Yang D L et al. Robust full-pose-parameter estimation for the LED array in Fourier ptychographic microscopy[J]. Biomedical Optics Express, 13, 4468-4482(2022).

    [9] Hu C F, Kandel M E, Lee Y J et al. Synthetic aperture interference light (SAIL) microscopy for high-throughput label-free imaging[J]. Applied Physics Letters, 119, 233701(2021).

    [10] Dong J, Yetisen A K, Zhao C et al. Single-shot high-throughput phase imaging with multibeam array interferometric microscopy[J]. ACS Photonics, 8, 3536-3547(2021).

    [11] Ďuriš M, Bouchal P, Rovenská K et al. Coherence-encoded synthetic aperture for super-resolution quantitative phase imaging[J]. APL Photonics, 7, 046105(2022).

    [12] Yeh L H, Chowdhury S, Waller L. Computational structured illumination for high-content fluorescence and phase microscopy[J]. Biomedical Optics Express, 10, 1978-1998(2019).

    [13] Li J J, Zhou N, Sun J S et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy[J]. Light: Science & Applications, 11, 154(2022).

    [14] Ahar A, Chlipala M, Birnbaum T et al. Suitability analysis of holographic vs light field and 2D displays for subjective quality assessment of Fourier holograms[J]. Optics Express, 28, 37069-37091(2020).

    [15] Shin J, Bosworth B T, Foster M A. Compressive fluorescence imaging using a multi-core fiber and spatially dependent scattering[J]. Optics Letters, 42, 109-112(2016).

    [16] Frese D, Sain B, Zhou H Q et al. A wavelength and polarization selective photon sieve for holographic applications[J]. Nanophotonics, 10, 4543-4550(2021).

    [17] Lu L P, Li J J, Shu Y F et al. Hybrid brightfield and darkfield transport of intensity approach for high-throughput quantitative phase microscopy[J]. Advanced Photonics, 4, 056002(2022).

    [18] Liu S Y, Mulligan J A, Adie S G. Volumetric optical coherence microscopy with a high space-bandwidth-time product enabled by hybrid adaptive optics[J]. Biomedical Optics Express, 9, 3137-3152(2018).

    [19] Ibrahim D G A. Fast phase-shifting technique for 3-D surface micro-topography measurement[J]. Measurement, 135, 106-111(2019).

    [20] Bumstead J R, Park J J, Rosen I A et al. Designing a large field-of-view two-photon microscope using optical invariant analysis[J]. Neurophotonics, 5, 025001(2018).

    [21] Fan J T, Suo J L, Wu J M et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J]. Nature Photonics, 13, 809-816(2019).

    [22] Park J, Brady D J, Zheng G et al. Review of bio-optical imaging systems with a high space-bandwidth product[J]. Advanced Photonics, 3, 044001(2021).

    [23] Wang Z, Lü G Q, Feng Q B et al. Enhanced resolution of holographic stereograms by moving or diffusing a virtual pinhole array[J]. Optics Express, 28, 22755-22766(2020).

    [24] Wang H D, Göröcs Z, Luo W et al. Computational out-of-focus imaging increases the space-bandwidth product in lens-based coherent microscopy[J]. Optica, 3, 1422-1429(2016).

    [25] Picazo-Bueno J A, Trusiak M, Micó V. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube[J]. Optics Express, 27, 5655-5669(2019).

    [26] Shan M G, Kandel M E, Majeed H et al. White-light diffraction phase microscopy at doubled space-bandwidth product[J]. Optics Express, 24, 29033-29039(2016).

    [27] Luo W, Zhang Y B, Feizi A et al. Pixel super-resolution using wavelength scanning[J]. Light: Science & Applications, 5, e16060(2016).

    [28] Yao M H, Cai Z X, Qiu X et al. Full-color light-field microscopy via single-pixel imaging[J]. Optics Express, 28, 6521-6536(2020).

    [29] Wu X J, Sun J S, Zhang J L et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging[J]. Optics Letters, 46, 2023-2026(2021).

    [30] Zhou N, Li J J, Sun J et al. Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography[J]. Optics Letters, 47, 969-972(2022).

    [31] Geng M Y, Yang X L, Chen H et al. Optically transparent graphene-based cognitive metasurface for adaptive frequency manipulation[J]. Photonics Research, 11, 129-136(2022).

    [32] Zuo C, Chen Q. Computational optical imaging: an overview[J]. Infrared and Laser Engineering, 51, 20220110(2022).

    [33] Zhao W S, Zhao S Q, Li L J et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy[J]. Nature Biotechnology, 40, 606-617(2022).

    [34] Baek Y, Park Y. Intensity-based holographic imaging via space-domain Kramers-Kronig relations[J]. Nature Photonics, 15, 354-360(2021).

    [35] Baek Y, Lee K, Shin S et al. Kramers-Kronig holographic imaging for high-space-bandwidth product[J]. Optica, 6, 45-51(2019).

    [36] Huang Z Z, Cao L C. High bandwidth-utilization digital holographic multiplexing: an approach using Kramers-Kronig relations[J]. Advanced Photonics Research, 3, 2100273(2022).

    [37] Venkatesh S, Schurig D. Computationally fast EM field propagation through axi-symmetric media using cylindrical harmonic decomposition[J]. Optics Express, 24, 29246-29268(2016).

    [38] Zhang W H, Zhang H, Jin G F. Adaptive-sampling angular spectrum method with full utilization of space-bandwidth product[J]. Optics Letters, 45, 4416-4419(2020).

    [39] Gao Y H, Cao L C. Projected refractive index framework for multi-wavelength phase retrieval[J]. Optics Letters, 47, 5965-5968(2022).

    [40] Zhang W X, Man T L, Zhang M H et al. Computational adaptive holographic fluorescence microscopy based on the stochastic parallel gradient descent algorithm[J]. Biomedical Optics Express, 13, 6431-6442(2022).

    [41] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [42] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [43] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 30, 833-835(2005).

    [44] Liu Z J, Guo C, Tan J B et al. Iterative phase-amplitude retrieval with multiple intensity images at output plane of gyrator transforms[J]. Journal of Optics, 17, 025701(2015).

    [45] Buco C R L, Almoro P F. Enhanced multiple-plane phase retrieval using adaptive support[J]. Optics Letters, 44, 6045-6048(2019).

    [46] Binamira J F, Almoro P F. Accelerated single-beam multiple-intensity reconstruction using unordered propagations[J]. Optics Letters, 44, 3130-3133(2019).

    [47] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).

    [48] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).

    [49] Miao J W, Murnane M M. A closer look at spin textures[J]. Nature Nanotechnology, 18, 1-2(2023).

    [50] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).

    [51] Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine[J]. Optica, 4, 736-745(2017).

    [52] Sidorenko P, Cohen O. Single-shot ptychography[J]. Optica, 3, 9-14(2015).

    [53] Wen X, Geng Y, Guo C et al. A parallel ptychographic iterative engine with a co-start region[J]. Journal of Optics, 22, 075701(2020).

    [54] Chang C C, Pan X C, Tao H et al. 3D single-shot ptychography with highly tilted illuminations[J]. Optics Express, 29, 30878-30891(2021).

    [55] Wen X, Zhou X Y, Li Y T et al. High-performance lensless diffraction imaging from diverse holograms by three-dimensional scanning[J]. Optics Letters, 47, 3423-3426(2022).

    [56] Liu Y Y, Liu Q W, Li Y et al. High-resolution multi-wavelength lensless diffraction imaging with adaptive dispersion correction[J]. Optics Express, 29, 7197-7209(2021).

    [57] Zhang F C, Chen B, Morrison G R et al. Phase retrieval by coherent modulation imaging[J]. Nature Communications, 7, 13367(2016).

    [58] Song L, Lam E Y. Fast and robust phase retrieval for masked coherent diffractive imaging[J]. Photonics Research, 10, 758-768(2022).

    [59] Wu Y C, Sharma M K, Veeraraghavan A. WISH: wavefront imaging sensor with high resolution[J]. Light: Science & Applications, 8, 44(2019).

    [60] Xu C, Pang H, Cao A X et al. Phase retrieval by random binary amplitude modulation and ptychography principle[J]. Optics Express, 30, 14505-14517(2022).

    [61] Yu X L, Wang K W, Xiao J J et al. Recording point spread functions by wavefront modulation for interferenceless coded aperture correlation holography[J]. Optics Letters, 47, 409-412(2022).

    [62] Xu C, Yuan W, Cao A X et al. Enhancing multi-distance phase retrieval via unequal interval measurements[J]. Photonics, 8, 48(2021).

    [63] Zhou X Y, Wen X, Ji Y et al. Fast automatic multiple positioning for lensless coherent diffraction imaging[J]. Optics and Lasers in Engineering, 155, 107055(2022).

    [64] Oh J, Hugonnet H, Park Y. Quantitative phase imaging via the holomorphic property of complex optical fields[J]. Physical Review Research, 5, L022014(2023).

    [65] de Kronig L R. On the theory of dispersion of X-rays[J]. Journal of the Optical Society of America, 12, 547-557(1926).

    [66] Shen C, Liang M S, Pan A et al. Non-iterative complex wave-field reconstruction based on Kramers-Kronig relations[J]. Photonics Research, 9, 1003-1012(2021).

    [67] Lee C, Baek Y, Hugonnet H et al. Single-shot wide-field topography measurement using spectrally multiplexed reflection intensity holography via space-domain Kramers-Kronig relations[J]. Optics Letters, 47, 1025-1028(2022).

    [68] Li Y T, Shen C, Tan J B et al. Fast quantitative phase imaging based on Kramers-Kronig relations in space domain[J]. Optics Express, 29, 41067-41080(2021).

    [69] Li Y T, Wen X, Sun M et al. Spectrum sampling optimization for quantitative phase imaging based on Kramers-Kronig relations[J]. Optics Letters, 47, 2786-2789(2022).

    [70] Li Y T, Huang G C, Ma S et al. Single-frame two-color illumination computational imaging based on Kramers-Kronig relations[J]. Applied Physics Letters, 123, 141107(2023).

    [71] Zhang X D, Liu Z Q, Jiang M S et al. Fast and accurate auto-focusing algorithm based on the combination of depth from focus and improved depth from defocus[J]. Optics Express, 22, 31237-31247(2014).

    [72] Wang Z J, Lei M, Yao B L et al. Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing[J]. Biomedical Optics Express, 6, 4353-4364(2015).

    [73] Ye M, Chen X X, Li Q C et al. Depth from defocus measurement method based on liquid crystal lens[J]. Optics Express, 26, 28413-28420(2018).

    [74] Bathe-Peters M, Annibale P, Lohse M J. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser[J]. Optics Express, 26, 2359-2368(2018).

    [75] Hsu W Y. Automatic compensation for defects of laser reflective patterns in optics-based auto-focusing microscopes[J]. IEEE Sensors Journal, 20, 2034-2044(2020).

    [76] Bian Z C, Guo C F, Jiang S W et al. Autofocusing technologies for whole slide imaging and automated microscopy[J]. Journal of Biophotonics, 13, e202000227(2020).

    [77] Cao J, Cheng Y, Wang P et al. Autofocusing imaging system based on laser ranging and a retina-like sample[J]. Applied Optics, 56, 6222-6229(2017).

    [78] Cao J, Cheng Y, Wang P et al. Method based on bioinspired sample improves autofocusing performances[J]. Optical Engineering, 55, 103103(2016).

    [79] Hao Q, Xiao Y Q, Cao J et al. Improving the performances of autofocus based on adaptive retina-like sampling model[J]. Optics Communications, 410, 269-276(2018).

    [80] Kehtarnavaz N, Oh H J. Development and real-time implementation of a rule-based auto-focus algorithm[J]. Real-Time Imaging, 9, 197-203(2003).

    [81] Lesage A J, Kron S J. Design and implementation of algorithms for focus automation in digital imaging time-lapse microscopy[J]. Cytometry, 49, 159-169(2002).

    [82] He J, Zhou R Z, Hong Z L. Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera[J]. IEEE Transactions on Consumer Electronics, 49, 257-262(2003).

    [83] Xiong Y, Shafer S A. Depth from focusing and defocusing[C], 68-73(2002).

    [84] Dubois F, Schockaert C, Callens N et al. Focus plane detection criteria in digital holography microscopy by amplitude analysis[J]. Optics Express, 14, 5895-5908(2006).

    [85] Yan X Y, Lei J, Zhao Z. Multidirectional gradient neighbourhood-weighted image sharpness evaluation algorithm[J]. Mathematical Problems in Engineering, 2020, 1-7(2020).

    [86] Sun Y, Duthaler S, Nelson B J. Autofocusing in computer microscopy: selecting the optimal focus algorithm[J]. Microscopy Research and Technique, 65, 139-149(2004).

    [87] Moreno G, Ascaneo J S, Ricardo J O et al. A new focus detection criterion in holograms of planktonic organisms[J]. Pattern Recognition Letters, 138, 497-506(2020).

    [88] Langehanenberg P, Kemper B, Dirksen D et al. Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging[J]. Applied Optics, 47, D176-D182(2008).

    [89] Choi Y S, Lee S J. Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy[J]. Applied Optics, 48, 2983-2990(2009).

    [90] Guo C, Zhao Y X, Tan J B et al. Adaptive lens-free computational coherent imaging using autofocusing quantification with speckle illumination[J]. Optics Express, 26, 14407-14420(2018).

    [91] Guo C, Tan J B, Liu Z J. Precision influence of a phase retrieval algorithm in fractional Fourier domains from position measurement error[J]. Applied Optics, 54, 6940-6947(2015).

    [92] Dubois F, El Mallahi A, Dohet-Eraly J et al. Refocus criterion for both phase and amplitude objects in digital holographic microscopy[J]. Optics Letters, 39, 4286-4289(2014).

    [93] Lyu M, Yuan C J, Li D Y et al. Fast autofocusing in digital holography using the magnitude differential[J]. Applied Optics, 56, F152-F157(2017).

    [94] Yang C P, Chen M H, Zhou F F et al. Accurate and rapid auto-focus methods based on image quality assessment for telescope observation[J]. Applied Sciences, 10, 658(2020).

    [95] Sun Y, Duthaler S, Nelson B J. Autofocusing algorithm selection in computer microscopy[C], 70-76(2005).

    [96] Gillespie J, King R A. The use of self-entropy as a focus measure in digital holography[J]. Pattern Recognition Letters, 9, 19-25(1989).

    [97] Tsai D Y, Lee Y, Matsuyama E. Information entropy measure for evaluation of image quality[J]. Journal of Digital Imaging, 21, 338-347(2008).

    [98] Ren Z B, Chen N, Chan A et al. Autofocusing of optical scanning holography based on entropy minimization[C], DT4A.4(2015).

    [99] Memmolo P, Distante C, Paturzo M et al. Automatic focusing in digital holography and its application to stretched holograms[J]. Optics Letters, 36, 1945-1947(2011).

    [100] Memmolo P, Paturzo M, Javidi B et al. Refocusing criterion via sparsity measurements in digital holography[J]. Optics Letters, 39, 4719-4722(2014).

    [101] Zhang Y B, Wang H D, Wu Y C et al. Edge sparsity criterion for robust holographic autofocusing[J]. Optics Letters, 42, 3824-3827(2017).

    [102] Guo H N, Cao J Z, Zhou Z F et al. Image definition evaluation algorithm based on color relativity[J]. Infrared and Laser Engineering, 42, 3132-3136(2013).

    [103] Gao P, Yao B L, Rupp R et al. Autofocusing based on wavelength dependence of diffraction in two-wavelength digital holographic microscopy[J]. Optics Letters, 37, 1172-1174(2012).

    [104] Levandowsky M, Winter D. Distance between sets[J]. Nature Physical Science, 235, 60(1972).

    [105] Tanimoto T T[M]. An elementary mathematical theory of classification and prediction(1958).

    [106] Chung N C, Miasojedow B, Startek M et al. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data[J]. BMC Bioinformatics, 20, 644(2019).

    [107] Zhou X Y, Xiong P B, Chi D Z et al. Fast autofocusing based on pixel difference with the Tanimoto coefficient between images[J]. Optics Letters, 47, 3752-3755(2022).

    [108] Mir H, Xu P, van Beek P. An extensive empirical evaluation of focus measures for digital photography[J]. Proceedings of SPIE, 9023, 90230I(2014).

    [109] Zhou X Y, Li Z Y, Qiao Z L et al. Fast autofocusing of recorded planes by salient feature region for coherent diffraction imaging[J]. Journal of Biophotonics, 16, e202300278(2023).

    [111] Zhu X L, Zhang Y S, Fang Y Q et al. Review of multi-exposure image fusion methods[J]. Laser & Optoelectronics Progress, 60, 2200003(2023).

    [112] Yu H Y, Fan Z G, Jin H H et al. Automatic discrimination and separation method for defocused images based on image gray ratio[J]. Laser & Optoelectronics Progress, 60, 2210001(2023).

    [113] Jiang H J, Yin Z Y, Zhang Q et al. Quantitative evaluation of binary defocusing in fringe projection profilometry based on digital correlation[J]. Laser & Optoelectronics Progress, 60, 2211002(2023).

    [114] Wang J S, Gong Y, Gao Z S et al. Design of dual-band optical system with long back working distance and continuous zoom[J]. Laser & Optoelectronics Progress, 60, 2122004(2023).

    [115] Luo T Q, Deng X J, Liu C et al. Depth estimation based on spatial geometry in focal stacks[J]. Acta Optica Sinica, 43, 2010001(2023).

    [116] Chen X W, Zhu W Y, Qian X M et al. Scale model of focused Gaussian beam propagating in turbulent atmosphere[J]. Chinese Journal of Lasers, 50, 2205001(2023).

    [117] Harris C G, Stephens M J. A combined corner and edge detector[C](1988).

    [118] Jing J F, Gao T, Zhang W C et al. Image feature information extraction for interest point detection: a comprehensive review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 4694-4712(2023).

    Tools

    Get Citation

    Copy Citation Text

    Zhengjun Liu, Xuyang Zhou, Xiu Wen, Yutong Li, Shutian Liu. Review of Methods for Enhancing Measurement and Computation Speeds in Computational Optical Imaging Systems (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(2): 0211007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Oct. 25, 2023

    Accepted: Dec. 21, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Liu Zhengjun (zjliu@hit.edu.cn), Zhou Xuyang (xyzhou0508@163.com)

    DOI:10.3788/LOP232366

    Topics