Optical Communication Technology, Volume. 47, Issue 4, 58(2023)

OAM pattern recognition of high order composite LG beams based on convolutional neural networks

SONG Zhiyi... JIN Zhaoxiang, WANG Yuyan, CHEN Jianfei and ZHANG Sheng |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(14)

    [1] [1] ARLT J, DHOLAKIA K, ALLEN L, et al. The production of multi-ringed Laguerre–Gaussian modes by computer-generated holograms[J]. Journal of Modern Optics, 1998, 45(6): 1231-1237.

    [2] [2] WANG J, YANG J Y, FAZAL I M, et al. Terabit free-space data trans-mission employing orbital angular momentum multiplexing[J]. Nature pho-tonics, 2012, 6(7): 488-496.

    [3] [3] XIE G, LI L, YAN Y, et al. Performance metrics for a free-space communi-cation link based on multiplexing of multiple orbital angular momentum beams with higher order radial indices[C]. OSA OLEO: Applications and Technology, May 10-15, 2015, San Jose, USA. San Jose: OSA, 2015: JTh2A.62-1-JTh2A.62-2.

    [4] [4] XIE G, REN Y, HUANG H, et al. Experimental analysis of multipl-exing/demultiplexing Laguerre Gaussian beams with different radial index[C]. OSA Frontiers in Optics 2014, October 19-23, Tucson, USA. Tucson, OSA: 2014: FTh4B.6-1-FTh4B.6-2.

    [5] [5] LI L, XIE G, YAN Y, et al. Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre-Gaussian beams[J]. JOSA B, 2017, 34(1): 1-6.

    [6] [6] WANG J, LIU J, LI S, et al. Orbital angular momentum and beyond in free-space optical communications[J]. Nanophotonics, 2022, 11(4): 645-680.

    [7] [7] ANGUITA J A, NEIFELD M A, VASIC B V. Turbulence-induced cha-nnel crosstalk in an orbital angular momentum-multiplexed free-space opti-cal link[J]. Applied Optics, 2008, 47(13): 2414-2429.

    [8] [8] DOSTER T, WATNIK A T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks[J]. Applied Optics, 2017, 56(12): 3386-3396.

    [9] [9] LI J, ZHANG M, WANG D, et al. Joint atmospheric turbulence detec-tion and adaptive demodulation technique using the CNN for the OAM-FSO communication[J]. Optics Express, 2018, 26(8): 10494-10508.

    [10] [10] WANG Z, DEDO M I, GUO K, et al. Efficient recognition of the pro-pagated orbital angular momentum modes in turbulences with the convolu-tional neural network[J]. IEEE Photonics Journal, 2019, 11(3): 1-14.

    [11] [11] DEDO M I, WANG Z, GUO K, et al. OAM mode recognition based on joint scheme of combining the Gerchberg–Saxton (GS) algorithm and convo-lutional neural network(CNN)[J]. Optics Communications, 2020, 456: 124696-1-124696-8.

    [12] [12] NA Y, KO D K. Adaptive demodulation by deep-learning-based identi-fication of fractional orbital angular momentum modes with structural dis-tortion due to atmospheric turbulence[J]. Scientific Reports, 2021, 11(1): 1-12.

    [13] [13] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 81-85.

    [14] [14] TANG H, XU W, WU G. Average capacity of OAM-multiplexed FSO system with vortex beam propagating through non-Kolmogorov turbulence[J]. China Communications, 2016, 13(10): 153-159.

    Tools

    Get Citation

    Copy Citation Text

    SONG Zhiyi, JIN Zhaoxiang, WANG Yuyan, CHEN Jianfei, ZHANG Sheng. OAM pattern recognition of high order composite LG beams based on convolutional neural networks[J]. Optical Communication Technology, 2023, 47(4): 58

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 2, 2023

    Accepted: --

    Published Online: Feb. 2, 2024

    The Author Email:

    DOI:10.13921/j.cnki.issn1002-5561.2023.04.011

    Topics