Journal of Inorganic Materials, Volume. 35, Issue 4, 482(2020)
[1] XIE S H, LIU Y X, DENG J G et al. Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of
[2] GENUINO H C, DHARMARATHNA S, NJAGI E C et al. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts[D]. Journal of Physical Chemistry C, 116, 12066-12078(2012).
[3] SIHAIB Z, PULEO F, GARCIA-VARGAS J M et al. Manganese oxide-based catalysts for toluene oxidation[D]. Applied Catalysis B: Environmental, 209, 689-700(2017).
[4] ROKICIŃSKA A, DROZDEK M, DUDEK B et al. Cobalt- containing BEA zeolite for catalytic combustion of toluene[D]. Applied Catalysis B: Environmental, 212, 59-67(2017).
[5] SANTOS V P, PEREIRA M F R, ÓRFÃO J J M et al. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds[D]. Applied Catalysis B: Environmental, 99, 353-363(2010).
[6] ŠULIGOJ A, ŠTANGAR U L, RISTIĆ A et al. TiO2-SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air[D]. Applied Catalysis B: Environmental, 184, 119-131(2016).
[7] QIAN X F, YUE D T, TIAN Z Y et al. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs[D]. Applied Catalysis B: Environmental, 193, 16-21(2016).
[8] CHEN J, CHEN X, XU W J et al. Homogeneous introduction of CeO
[9] YANG H G, DENG J G, LIU Y X et al. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2-Al2O3 for toluene oxidation[D]. Journal of Molecular Catalysis A: Chemical, 414, 9-18(2016).
[10] PENG R S, SUN X B, LI S J et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[D]. Chemical Engineering Journal, 306, 1234-1246(2016).
[11] ALGHAMDI A O, JEDIDI A, AZIZ S G et al. Theoretical insights into dehydrogenative chemisorption of alkylaromatics on Pt(100) and Ni(100)[D]. Journal of Catalysis, 363, 197-203(2018).
[12] ZHANG Z X, JIANG Z, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review[D]. Catalysis Today, 264, 270-278(2016).
[13] XIE S H, LIU Y X, DENG J G et al. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3 for the oxidation of methane and
[14] SANTOS V P, CARABINEIRO S A C, TAVARES P B et al. Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts[D]. Applied Catalysis B: Environmental, 99, 198-205(2010).
[15] FU X R, LIU Y, YAO W Y et al. One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation[D]. Catalysis Communications, 83, 22-26(2016).
[16] YIN G H, HUANG X Y, CHEN T Y et al. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2 reduction[D]. ACS Catalysis, 8, 1009-1017(2018).
[17] WU D W, ZHANG Q L, LIN T et al. Effect of Fe on the selective catalytic reduction of NO by NH3 at low temperature over Mn/CeO2-TiO2 catalyst[D]. Journal of Inorganic Materials, 27, 495-500(2012).
[18] YU W W, ZHANG Q H, SHI G Y et al. Preparation of Pt-loaded TiO2 nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties[D]. Journal of Inorganic Materials, 26, 747-752(2011).
[19] COMOTTI M, LI W C, SPLIETHOFF B et al. Support effect in high activity gold catalysts for CO oxidation[D]. Journal of the American Chemical Society, 128, 917-924(2006).
[20] LEE J S, PARK G S, LEE H I et al. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions[D]. Nano Letters, 11, 5362-5366(2011).
[21] ZHENG Y L, WANG W Z, JIANG D et al. Amorphous MnO
[22] GUO Y Y, ZHANG S, MU W T et al. Methanol total oxidation as model reaction for the effects of different Pd content on Pd-Pt/CeO2-Al2O3-TiO2 catalysts[D]. Molecular Catalysis, 429, 18-26(2017).
[23] CLEARFIELD A, THAKUR D S. Zirconium and titanium phosphates as catalysts: a review[D]. Applied Catalysis, 26, 1-26(1986).
[24] YU J C, ZHANG L Z, ZHENG Z et al. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[D]. Chemistry of Materials, 15, 2280-2286(2003).
[25] KŐRÖSI L, OSZKÓ A, GALBÁCS G et al. Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films[D]. Applied Catalysis B: Environmental, 77, 175-183(2007).
[26] KÖRÖSI L, PAPP S, BERTÓTI I et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2[D]. Chemistry of Materials, 19, 4811-4819(2007).
[27] MASLOVA M V, RUSANOVA D, NAYDENOV V et al. Synthesis, characterization, and sorption properties of amorphous titanium phosphate and silica-modified titanium phosphates[D]. Inorganic Chemistry, 47, 11351-11360(2008).
[28] ZHU Y L, ZHOU W, SUNARSO J et al. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution[D]. Advanced Functional Materials, 26, 5862-5872(2016).
[29] HEO Y W, PARK S J, IP K et al. Transport properties of phosphorus-doped ZnO thin films[D]. Applied Physics Letters, 83, 1128-1130(2003).
[30] YIN G H, BI Q Y, ZHAO W et al. Efficient conversion of CO2 to methane photocatalyzed by conductive black titania[D]. ChemCatChem, 9, 4389-4396(2017).
[31] PLUMEJEAU S, RIVALLIN M, BROSILLON S et al. The reductive dehydration of cellulose by solid/gas reaction with TiCl4 at low temperature: a cheap, simple, and green process for preparing anatase nanoplates and TiO2/C composites[D]. Chemistry-A European Journal, 22, 17262-17268(2016).
[32] REN T Z, YUAN Z Y, AZIOUNE A et al. Tailoring the porous hierarchy of titanium phosphates[D]. Langmuir, 22, 3886-3894(2006).
[33] YOSHIDA H, YAZAWA Y, HATTORI T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion[D]. Catalysis Today, 87, 19-28(2003).
[34] TIERNAN M J, FINLAYSON O E. Effects of ceria on the combustion activity and surface properties of Pt/Al2O3 catalysts[D]. Applied Catalysis B: Environmental, 19, 23-25(1998).
[35] LYKHACH Y, FAISAL F, SKÁLA T et al. Interplay between the metal-support interaction and stability in Pt/Co3O4(111) model catalysts[D]. Journal of Materials Chemistry A, 6, 23078-23086(2018).
[36] ZHANG C B, HE H, TANAKA KI. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature[D]. Applied Catalysis B: Environmental, 65, 37-43(2006).
[37] RAHMANI F, HAGHIGHI M, ESTIFAEE P. Synthesis and characterization of Pt/Al2O3-CeO2 nanocatalyst used for toluene abatement from waste gas streams at low temperature: conventional
[38] CHEN C Y, CHEN F, ZHANG L et al. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts[D]. Chemical Communications, 51, 5936-5938(2015).
[39] LI S M, HAO Q L, ZHAO R Z et al. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts[D]. Chemical Engineering Journal, 285, 536-543(2016).
[40] CARABINEIRO S A C, CHEN X, MARTYNYUK O et al. Gold supported on metal oxides for volatile organic compounds total oxidation[D]. Catalysis Today, 244, 103-114(2015).
Get Citation
Copy Citation Text
Xieyi HUANG, Peng WANG, Guoheng YIN, Shaoning ZHANG, Wei ZHAO, Dong WANG, Qingyuan BI, Fuqiang HUANG.
Category: RESEARCH LETTERS
Received: Apr. 12, 2019
Accepted: --
Published Online: Mar. 1, 2021
The Author Email: Qingyuan BI (biqingyuan@mail.sic.ac.cn), Fuqiang HUANG (huangfq@mail.sic.ac.cn)