Journal of Synthetic Crystals, Volume. 49, Issue 11, 2013(2020)
Development of GaNBased MicroLED Display Technology
[1] [1] Lin J Y, Jiang H X. Development of microLED[J]. Applied Physics Letters, 2020, 116(10): 100502.
[2] [2] Wierer J J Jr, Tansu N. IIInitride microLEDs for efficient emissive displays[J]. Laser & Photonics Reviews, 2019, 13(9): 1900141.
[3] [3] Jin S X, Li J, Li J Z, et al. GaN microdisk light emitting diodes[J]. Applied Physics Letters, 2000, 76(5): 631633.
[4] [4] Day J, Li J, Lie D Y C, et al. Fullscale selfemissive blue and green microdisplays based on GaN microLED arrays[C]//Quantum Sensing and Nanophotonic Devices IX. San Francisco, California, USA. SPIE, 2012: 8268.
[5] [5] Chong W C, Cho W K, Liu Z J, et al. 1700 pixels per inch (PPI) passivematrix microLED display powered by ASIC[C]//2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). October 1922, 2014, La Jolla, CA, USA. IEEE, 2014: 14.
[6] [6] Liu Z J, Chong W C, Wong K M, et al. 360 PPI flipchip mounted active matrix addressable light emitting diode on silicon (LEDoS) microdisplays[J]. Journal of Display Technology, 2013, 9(8): 678682.
[7] [7] Zhang X, Qi L H, Chong W C, et al. Active matrix monolithic microLED fullcolor microdisplay[J]. Journal of the Society for Information Display, 2020: n/a.
[8] [8] Wu M, Gong Z, Kuehne A J, et al. Hybrid GaN/organic microstructured lightemitting devices via inkjet printing[J]. Optics Express, 2009, 17(19): 1643616443.
[9] [9] Mckendry J J D, Green R P, Kelly A E, et al. Highspeed visible light communications using individual pixels in a micro lightemitting diode array[J]. IEEE Photonics Technology Letters, 2010, 22(18): 13461348.
[10] [10] Islim M S, Ferreira R X, He X Y, et al. Towards 10 Gb/s orthogonal frequency division multiplexingbased visible light communication using a GaN violet microLED[J]. Photonics Research, 2017, 5(2): A35.
[11] [11] Li G, Wang W, Yang W, et al. GaNbased lightemitting diodes on various substrates: a critical review[J]. Reports on Progress in Physics. Physical Society (Great Britain), 2016, 79(5): 056501.
[12] [12] Ponce F A, Bour D P. Nitridebased semiconductors for blue and green lightemitting devices[J]. Nature, 1997, 386(6623): 351359.
[13] [13] Egawa T, Ohmura H, Ishikawa H, et al. Demonstration of an InGaNbased lightemitting diode on an AlN/sapphire template by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2002, 81(2): 292294.
[14] [14] Zhang B, Egawa T, Liu Y, et al. InGaN multiplequantumwell lightemitting diodes on an AlN/sapphire template by metalorganic chemical vapor deposition[J]. Physica Status Solidi (c), 2003(7): 22442247.
[15] [15] Chang S J, Lin Y C, Su Y K, et al. Nitridebased LEDs fabricated on patterned sapphire substrates[J]. SolidState Electronics, 2003, 47(9): 15391542.
[16] [16] Dadgar A, Blsing J, Diez A, et al. Metalorganic chemical vapor phase epitaxy of crackfree GaN on Si (111) exceeding 1 μm in thickness[J]. Japanese Journal of Applied Physics, 2000, 39(Part 2, No. 11B): L1183L1185.
[17] [17] Kikuchi A, Kawai M, Tada M, et al. InGaN/GaN multiple quantum disk nanocolumn lightemitting diodes grown on (111) Si substrate[J]. Japanese Journal of Applied Physics, 2004, 43(No. 12A): L1524L1526.
[18] [18] Zhao D G, Xu S J, Xie M H, et al. Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6HSiC(0001), and cplane sapphire[J]. Applied Physics Letters, 2003, 83(4): 677679.
[19] [19] Enya Y, Yoshizumi Y, Kyono T, et al. 531 nm green lasing of InGaN based laser diodes on semipolar {202-1} freestanding GaN substrates[J]. Applied Physics Express, 2009, 2: 082101.
[20] [20] Kelly M K, Vaudo R P, Phanse V M, et al. Large freestanding GaN substrates by hydride vapor phase epitaxy and laserinduced liftoff[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 3A): L217L219.
[21] [21] Moustakas T D, Paiella R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz[J]. Reports on Progress in Physics. Physical Society (Great Britain), 2017, 80(10): 106501.
[22] [22] Dupré L, Marra M, Verney V, et al. Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications[C]//Gallium Nitride Materials and Devices XII. San Francisco, California, USA. SPIE, 2017: n/a.
[23] [23] Nishikawa A, Loesing A, Slischka B. Achieving high uniformity and yield for micro LED applications with precise strainengineered largediameter epiwafers[C]//SPIE OPTO. Proc SPIE 10940, LightEmitting Devices, Materials, and Applications, San Francisco, California, USA. 2019, 1094: 109400Z.
[24] [24] Aida H, Aota N, Takeda H, et al. Control of initial bow of sapphire substrates for IIInitride epitaxy by internally focused laser processing[J]. Journal of Crystal Growth, 2012, 361: 135141.
[25] [25] Nishikawa A, Groh L, Solari W, et al. 200mm GaNonSi based blue lightemitting diode wafer with high emission uniformity[J]. Japanese Journal of Applied Physics, 2013, 52(8S): 08 JB25.
[26] [26] Liu X Y, Wang X H, Zhang Y G, et al. Insight into the nearconduction band states at the crystallized interface between GaN and SiNx grown by lowpressure chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 2172121729.
[27] [27] Hwang D, Mughal A, Pynn C D, et al. Sustained high external quantum efficiency in ultrasmall blue IIInitride microLEDs[J]. Applied Physics Express, 2017, 10(3): 032101.
[28] [28] Liu B, Chen D J, Lu H, et al. Hybrid light emitters and UV solarblind avalanche photodiodes based on IIInitride semiconductors[J]. Advanced Materials, 2019: 1904354.
[29] [29] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Applied Physics Letters, 1986, 48(5): 353355.
[30] [30] Yang X D, Zhang J L, Wang X L, et al. Enhance the efficiency of greenyellow LED by optimizing the growth condition of preparation layer[J]. Superlattices and Microstructures, 2020, 141: 106459.
[31] [31] Zhang J L, Wang X L, Liu J L, et al. Study on carrier transportation in InGaN based green LEDs with Vpits structure in the active region[J]. Optical Materials, 2018, 86: 4650.
[32] [32] Chen Y F, Chen Z Z, Li J Z, et al. A study of GaN nucleation and coalescence in the initial growth stages on nanoscale patterned sapphire substrates via MOCVD[J]. CrystEngComm, 2018, 20(42): 68116820.
[33] [33] Mo C L, Fang W Q, Pu Y, et al. Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD[J]. Journal of Crystal Growth, 2005, 285(3): 312317.
[34] [34] Quan Z J, Wang L, Zheng C D, et al. Roles of Vshaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well lightemitting diodes[J]. Journal of Applied Physics, 2014, 116(18): 183107.
[35] [35] Wang Q, Yu J C, Tao T, et al. Fabrication and characterization of GaNbased microLEDs on silicon substrate[J]. Chinese Physics Letters, 2019, 36(8): 088501.
[36] [36] Tian P F, Mckendry J J D, Gong Z, et al. Sizedependent efficiency and efficiency droop of blue InGaN microlight emitting diodes[J]. Applied Physics Letters, 2012, 101(23): 231110.
[37] [37] Olivier F, Tirano S, Dupré L, et al. Influence of sizereduction on the performances of GaNbased microLEDs for display application[J]. Journal of Luminescence, 2017, 191: 112116.
[38] [38] Jia X T, Zhou Y G, Liu B, et al. A simulation study on the enhancement of the efficiency of GaNbased blue lightemitting diodes at low current density for microLED applications[J]. Materials Research Express, 2019, 6(10): 105915.
[39] [39] Olivier F, Daami A, Licitra C, et al. Shockleyreadhall and auger nonradiative recombination in GaN based LEDs:a size effect study[J]. Applied Physics Letters, 2017, 111(2): 022104.
[40] [40] Konoplev S S, Bulashevich K A, Karpov S Y. From largesize to microLEDs: scaling trends revealed by modeling[J]. Physica Status Solidi (a), 2018, 215(10): 1700508.
[41] [41] Wong M S, Hwang D, Alhassan A I, et al. High efficiency of IIInitride microlightemitting diodes by sidewall passivation using atomic layer deposition[J]. Optics Express, 2018, 26(16): 21324.
[42] [42] Kou J, Shen C C, Shao H, et al. Impact of the surface recombination on InGaN/GaNbased blue microlight emitting diodes[J]. Optics Express, 2019, 27(12): A643A653.
[43] [43] Wong M S, Lee C, Myers D J, et al. Sizeindependent peak efficiency of IIInitride microlightemittingdiodes using chemical treatment and sidewall passivation[J]. Applied Physics Express, 2019, 12(9): 097004.
[44] [44] Zhu J, Takahashi T, Ohori D, et al. Nearcomplete elimination of sizedependent efficiency decrease in GaN microlightemitting diodes[J]. Physica Status Solidi (a), 2019, 216(22): 1900380.
[45] [45] Lee D H, Lee J H, Park J S, et al. Improving the leakage characteristics and efficiency of GaNbased microlightemitting diode with optimized passivation[J]. ECS Journal of Solid State Science and Technology, 2020, 9(5): 055001.
[46] [46] Ley R T, Smith J M, Wong M S, et al. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation[J]. Applied Physics Letters, 2020, 116(25): 251104.
[47] [47] Smith J M, Ley R, Wong M S, et al. Comparison of sizedependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter[J]. Applied Physics Letters, 2020, 116(7): 071102.
[48] [48] Liu Z, Lin C H, Hyun B R, et al. Microlightemitting diodes with quantum dots in display technology[J]. Light, Science & Applications, 2020, 9: 83.
[49] [49] Boroditsky M, Gontijo I, Jackson M, et al. Surface recombination measurements on IIIV candidate materials for nanostructure lightemitting diodes[J]. Journal of Applied Physics, 2000, 87(7): 34973504.
[50] [50] Liou J C, Yang C F. Design and fabrication of microLED array with applicationspecific integrated circuits (ASICs) light emitting display[J]. Microsystem Technologies, 2018, 24(10): 40894099.
[51] [51] Gou F W, Hsiang E L, Tan G J, et al. High performance colorconverted microLED displays[J]. Journal of the Society for Information Display, 2019, 27(4): 199206.
[52] [52] Kim H M, Ryu M, Cha J H J, et al. 43: distinguished paper: 10 μm pixel, quantumdots color conversion layer for high resolution and full color active matrix microLED display[J]. SID Symposium Digest of Technical Papers, 2019, 50(1): 2629.
[53] [53] Zhang X, Li P A, Zou X B, et al. Active matrix monolithic LED microdisplay using GaNonSi epilayers[J]. IEEE Photonics Technology Letters, 2019, 31(11): 865868.
[54] [54] Kang J H, Li B J, Zhao T S, et al. RGB arrays for microlightemitting diode applications using nanoporous GaN embedded with quantum dots[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 3089030895.
[55] [55] Han H V, Lin H Y, Lin C C, et al. Resonantenhanced fullcolor emission of quantumdotbased micro LED display technology[J]. Optics Express, 2015, 23(25): 3250432515.
[56] [56] Pai Y M, Lin C H, Lin H Y, et al. Optical cross talk reduction in a quantumdotbased full color microLED display by a lithographicfabricated photoresist mold[J]. Photonics Research, 2017, 5(5): 411416.
[57] [57] Sabnis R W. Color filter technology for liquid crystal displays[J]. Displays, 1999, 20(3): 119129.
[58] [58] Osinski J, Palomaki P. 45: quantum dot design criteria for color conversion in MicroLED displays[J]. SID Symposium Digest of Technical Papers, 2019, 50(1): 3437.
[59] [59] Clapp A R, Medintz I L, Mattoussi H. Frster resonance energy transfer investigations using quantumdot fluorophores[J]. ChemPhysChem, 2006, 7(1): 4757.
[60] [60] Chanyawadee S, Lagoudakis P G, Harley R T, et al. Increased colorconversion efficiency in hybrid lightemitting diodes utilizing nonradiative energy transfer[J]. Advanced Materials, 2010, 22(5): 602606.
[61] [61] Zhuang Z, Guo X, Liu B, et al. High color rendering index hybridⅢnitride/nanocrystals white lightemitting diodes[J]. Science Foundation in China, 2016, 24(3): 20.
[62] [62] Krishnan C, Brossard M, Lee K Y, et al. Hybrid photonic crystal lightemitting diode renders 123% color conversion effective quantum yield[J]. Optica, 2016, 3(5): 503.
[63] [63] Wang S W, Hong K B, Tsai Y L, et al. Wavelength tunable InGaN/GaN nanoring LEDs via nanosphere lithography[J]. Scientific Reports, 2017, 7: 42962.
[64] [64] Huang Chen S W, Shen C C, Wu T Z, et al. Fullcolor monolithic hybrid quantum dot nanoring micro lightemitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer[J]. Photonics Research, 2019, 7(4): 416.
Get Citation
Copy Citation Text
JIANG Fulong, XU Feifan, LIU Zhaojun, LIU Bin, ZHENG Youdou. Development of GaNBased MicroLED Display Technology[J]. Journal of Synthetic Crystals, 2020, 49(11): 2013
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email: Fulong JIANG (jiangfl@sustech.edu.cn)
CSTR:32186.14.