Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 973(2024)

Research Progress on Laser Induced Damage to Transparent Ceramics

CHEN Yue1...2, JIANG Benxue1,*, FENG Tao1 and ZHANG Long1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(74)

    [1] [1] WOOD R M. Laser damage in optical materials[M]. WashingtoSPIE, 1986: 457-466.

    [2] [2] SCHAFFER C B. Interaction of femtosecond laser pulses with transparent materials[D]. Boston: Harvard University, 2001.

    [3] [3] HAYNAM C A, WEGNER P J, AUn. ERBACH J M, et al. National Ignition Facility laser performance status[J]. Appl Opt, 2007, 46(16): 3276-3303.

    [4] [4] SCHAFFER C, NISHIMURA N, GLEZER E, et al. Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds[J]. Opt Express, 2002, 10(3): 196-203.

    [5] [5] XU SHIZHEN, ZU XIAOTAO, YUAN XIAODONG. Localized CO2 laser treatment and post-heating process to reduce the growth coef f icient of fused silica surface damage[J]. Chin Opt Lett, 2011, 9(6): 73-75.

    [6] [6] MICLOS S, SAVASTRU D, LANCRANJAN I. Numerical simulation of a fiber laser bending sensitivity[J]. Rom Rep Phys, 2010, 62(3): 519-527.

    [7] [7] MAEDA H. Numerical analysis of photonic crystal waveguide with stub by CIP method[M]//Advances in Networked-Based Information Systems. Cham: Springer International Publishing, 2021: 320-328.

    [8] [8] KELDYSH L V. Ionization in the field of a strong electromagnetic wave[J]. Zh.eksperim.i Teor.fiz, 1964, 47: 1307-1314.

    [9] [9] SHEN N, BUDE J D, CARR C W. Model laser damage precursors for high quality optical materials[J]. Opt Express, 2014, 22(3): 3393-3404.

    [10] [10] WONG J, FERRIERA J L, LINDSEY E F, et al. Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses[J]. J Non Cryst Solids, 2006, 352(3): 255-272.

    [11] [11] QI H J, ZHU M P, FANG M, et al. Development of high-power laser coatings[J]. High Pow Laser Sci Eng, 2013, 1(1): 36-43.

    [12] [12] VIGNES R M, SOULES T F, STOLKEN J S, et al. Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures[J]. J Am Ceram Soc, 2013, 96(1): 137-145.

    [13] [13] REIF J, COSTACHE F, HENYK M, et al. Ripples revisited: Non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics[J]. Appl Surf Sci, 2002, 197-198: 891-895.

    [14] [14] YE Y, TAN Y, JIN G Y. Accurate measurement for damage evolution of ceramics caused by nanosecond laser pulses with polarization spectrum imaging[J]. Opt Express, 2019, 27(11): 16360-16376.

    [15] [15] IKESUE A, YOSHIDA K, YAMAMOTO T, et al. Optical scattering centers in polycrystalline Nd:YAG laser[J]. J Am Ceram Soc, 1997, 80(6): 1517-1522.

    [16] [16] IKESUE A, YOSHIDA K. Scattering in polycrystalline Nd:YAG lasers[J]. J Am Ceram Soc, 1998, 81(8): 2194-2196.

    [17] [17] IKESUE A, YOSHIDA K. Influence of pore volume on laser performance of Nd?:?YAG ceramics[J]. J Mater Sci, 1999, 34(6): 1189-1195.

    [18] [18] KAMIMURA T, KAWAGUCHI Y, ARII T, et al. Investigation of bulk laser damage in transparent YAG ceramics controlled with microstructural refinement[C]//Proc SPIE 7132, Laser-Induced Damage in Optical Materials, Boulder, USA. 2008: 362-366.

    [19] [19] BISSON J F, FENG Y, SHIRAKAWA A, et al. Laser damage threshold of ceramic YAG[J]. Jpn J Appl Phys, 2003, 42: L1025-L1027.

    [20] [20] ZHANG X J, YE Q, QU R H, et al. Research on laser induced damage in PLZT electro-optical transparent ceramic[J]. Opt Mater Express, 2016, 6(3): 952.

    [21] [21] DE VIDO M, PHILLIPS P J, HEIN J, et al. Influence of polishing and coating techniques on laser induced damage on AR-coated ceramic Yb:YAG[C]//Proc SPIE 9237, Laser-Induced Damage in Optical Materials, Boulder, USA. 2014: 273-280.

    [22] [22] SHEN Y, BO Y, ZONG N, et al. Experimental and theoretical investigation of pump laser induced thermal damage for polycrystalline ceramic and crystal Nd:YAG[J]. IEEE J Sel Top Quantum Electron, 2015, 21(1): 160-167.

    [23] [23] FERSMAN I A, KHAZOV L D. The effect of surface cleanliness of optical elements on their radiationresistance[J]. Sov J Opt Technol, 1971, 37: 627-628.

    [24] [24] HUNT J T, MANES K R, RENARD P A. Hot images from obscurations[J]. Appl Opt, 1993, 32(30): 5973-5982.

    [25] [25] WIDMAYER C C, MILAM D, DESZOEKE S P. Nonlinear formation of holographic images of obscurations in laser beams[J]. Appl Opt, 1997, 36(36): 9342-9347.

    [26] [26] KANE D M, HALFPENNY D R. Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: A mechanism for systematic surface laser damage[J]. J Appl Phys, 2000, 87(9): 4548-4552.

    [27] [27] HONIG J, NORTON M A, HOLLINGSWORTH W G, et al. Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants[C]// Proc.SPIE, Laser-Induced Damage in Optical Materials. Boulder, USA. 2005: 129-135.

    [28] [28] FEIGENBAUM E, ELHADJ S, MATTHEWS M J. Light scattering from laser induced pit ensembles on high power laser optics[J]. Opt Express, 2015, 23(8): 10589-10597.

    [29] [29] NORTON M, ADAMS J J, CARR C W, et al. Growth of laser damage in fused silica: Diameterto depth ratio[C]//Proc.SPIE.6720.Laser- Induced Damage in Optical Materials. Boulder, USA. 2008: 441-448.

    [30] [30] CHAMBONNEAU M, CHANAL M, REYNé S, et al. Investigations on laser damage growth in fused silica with simultaneous wavelength irradiation[J]. Appl Opt, 2015, 54(6): 1463-1470.

    [31] [31] MATTHEWS M J, SHEN N, HONIG J, et al. Phase modulation and morphological evolution associated with surface-bound particle ablation[J]. J Opt Soc Am B, JOSAB, 2013, 30(12): 3233-3242.

    [32] [32] BROWN A, OGLOZA A, TAYLOR L, et al. Continuous-wave laser damage and conditioning of particle contaminated optics[J]. Appl Opt, 2015, 54(16): 5216-5222.

    [33] [33] WANG S, WANG J, LEI X, et al. Investigation of the laser-induced surface damage of KDP crystal by explosion simulation[J]. Opt Expr, 2019, 27(11): 15142-1553.

    [34] [34] GIULIANO C R. Laser-induced damage to transparent dielectric materials[J]. Appl Phys Lett, 1964, 5(7): 137-139.

    [35] [35] YU Benhai, DAI Nengli, LI Yuhua, et al. J Inorg Mater, 2007, 22(2): 328-332.

    [36] [36] ZHANG Xuejiao, YE Qing, QU Ronghui, et al. China Laser, 2014, 41(7): 167-172.

    [37] [37] FEIT M D, RUBENCHIK A M, SHORE B W, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses II: Theory[C]//Proc SPIE 2428, Laser-Induced Damage in Optical Materials. Boulder, USA. 1995, 2428: 469-478.

    [38] [38] LIU X F, ZHAO Y A, LI D W, et al. Laser damage characteristics of the YAG ceramics[C]//Pacific Rim Laser Damage 2019: Optical Materials for High-Power Lasers. Qingdao, China. 2019: 181-189.

    [39] [39] RUSSO R E, MAO X L, LIU H C, et al. Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation[J]. Appl Phys A, 1999, 69(1): S887-S894.

    [40] [40] JIANG H, MCNARY J, TOM H W K, et al. Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids[J]. Appl Phys Lett, 2002, 81(17): 3149-3151.

    [41] [41] ZENG X Z, MAO X L, WEN S B, et al. Energy deposition and shock wave propagation during pulsed laser ablation in fused silica cavities[J]. J Phys D: Appl Phys, 2004, 37(7): 1132-1136.

    [42] [42] RAMAN R N, NEGRES R A, DEMOS S G. Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses[J]. Appl Phys Lett, 2011, 98(5): 051901.

    [43] [43] NEGRES R A, RAMAN R N, BUDE J D, et al. Dynamics of transient absorption in bulk DKDP crystals following laser energy deposition[J]. Opt Express, 2012, 20(18): 20447.

    [44] [44] DEMOS S G, NEGRES R A, RAMAN R N, et al. Relaxation dynamics of nanosecond laser superheated material in dielectrics[J]. Optica, 2015, 2(8): 765.

    [45] [45] RAMAN R N, DEMOS S G, SHEN N, et al. Damage on fused silica optics caused by laser ablation of surface-bound microparticles[J]. Opt Express, 2016, 24(3): 2634.

    [46] [46] LIU Hongjie, MENG Xiangjie, WANG Fang, et al. Opt Optoelectron Technol, 2013, 11(4): 8-11.

    [47] [47] ZHOU Qiang, WANG Junbo, QIU Rong, et al. Chin J Lasers, 2014, 41(3): 71-75.

    [48] [48] SHEN Chao, CHENG Xiangai, TIAN Ye, et al. J of Phys, 2016, 65(15): 149-159.

    [49] [49] SHEN C, CHAMBONNEAU M, CHENG X A, et al. Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica[J]. Appl Phys Lett, 2015, 107(11): 1-5.

    [50] [50] SHEN C, CHENG X A, JIANG T A, et al. Time-resolved imaging of filamentary damage on the exit surface of fused silica induced by 1 064?nm nanosecond laser pulse[J]. J Phys D: Appl Phys, 2015, 48(15): 155501.

    [51] [51] SHEN C, CHENG X A, XU Z J, et al. Observation of particle ejection behavior following laser-induced breakdown on the rear surface of a sodium chloride optical window[J]. Opt Expr, 2016, 56(1): 011009.

    [52] [52] LI He, CAI Jixing, TAN Yong, et al. Acta Opt Sin, 2016, 36(2): 171-178.

    [53] [53] DING W Y, ZHAO L J, CHEN M J, et al. Determination of stress waves and their effect on the damage extension induced by surface defects of KDP crystals under intense laser irradiation[J]. Optica, 2023, 10(6): 671.

    [54] [54] YUAN H, LI Y X, DAN Z Q, et al. Investigation and analysis of pin-point damage and damage growth characteristics in KDP and DKDP crystals[J]. Opt Express, 2023, 31(22): 35786.

    [55] [55] ECAULT R, BERTHE L, BOUSTIE M, et al. Observation of the shock wave propagation induced by a high-power laser irradiation into an epoxy material[J]. J Phys D: Appl Phys, 2013, 46(23): 235501.

    [56] [56] SOZET M, BOUILLET S, BERTHELOT J, et al. Sub-picosecond laser damage growth on high reflective coatings for high power applications[J]. Opt Express, 2017, 25(21): 25767-25781.

    [57] [57] HALLO G, LACOMBE C, PARREAULT R, et al. How to provide reliable metrology of online laser-induced damage on large fused silica optics using digital image correlation[C]//SPIE Optical Systems Design. Proc SPIE, Online Only. 2021, 11873: 31-37.

    [58] [58] SAKAKURA M, TOCHIO T, EIDA M, et al. Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals[J]. Opt Express, 2011, 19(18): 17780-17789.

    [59] [59] ZHANG Y M, ITO Y, SUN H J, et al. Investigation of multi-timescale processing phenomena in femtosecond laser drilling of zirconia ceramics[J]. Opt Express, 2022, 30(21): 37394-37406.

    [60] [60] LIU H J, HUANG J, WANG F R, et al. Subsurface defects of fused silica optics and laser induced damage at 351 nm[J]. Opt Express, 2013, 21(10): 12204-12217.

    [61] [61] LIU H J, YE X, ZHOU X D, et al. Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process[J]. Opt Mater, 2014, 36(5): 855-860.

    [62] [62] LU Q A, XU W H, HE X L, et al. Numerical simulation of defect influence on nanosecond laser manufacturing[J]. Int J Therm Sci, 2023, 183: 107900.

    [63] [63] FU Y L, LI J X, LIU Y, et al. Influence of surface roughness on laser-induced damage of Nd:YAG transparent ceramics[J]. Ceram Int, 2015, 41: 12535-12542.

    [64] [64] KAMIMURA T, KAWAGUCHI Y, ARII T, et al. Investigation of bulk laser damage in transparent YAG ceramics controlled with microstructural refinement[C]//Proc SPIE 7132, Laser-Induced Damage in Optical Materials, Boulder, USA. 2008, 7132: 362-366.

    [65] [65] YAVETSKIY R P, DOROSHENKO A G, PARKHOMENKO S V, et al. Microstructure evolution during reactive sintering of Y3Al5O12:Nd3+ transparent ceramics: Influence of green body annealing[J]. J Eur Ceram Soc, 2019, 39(13): 3867-3875.

    [66] [66] BERCEGOL H. What is laser conditioning: A review focused on dielectric multilayers[C]//SPIE Proceeding, Laser-Induced Damage in Optical Materials. Boulder, USA, 1999: 421-426.

    [67] [67] KOZLOWSKI M R, STAGGS M, RAINER F, et al. Laser conditioning and electronic defects of HfO2 and SiO2 thin films[C]//SPIE Proceeding, Laser-Induced Damage in Optical Materials. Boulder, USA, 1990: 269-282.

    [68] [68] STAGGS M C, YAN M, RUNKEL M J. Laser raster conditioning of KDP and DKDP crystals using XeCl and Nd:YAG lasers[C]//SPIE Proceedings Laser-Induced Damage in Optical Materials: 2000, Boulder, USA. 2001: 400-407.

    [69] [69] MENAPACE J, PENETRANTE B, MILLER P, et al. Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics[C]//Optical Fabrication and Testing. Boulder, USA, 2002: 56-68.

    [70] [70] CHEN Meng, YUAN Xiaodong, LV Haibing, et al. Opt Tech, 2010, 36(1): 79-83.

    [71] [71] SHEEHAN L M, KOZLOWSKI M R, RAINER F, et al. Large-area conditioning of optics for high-power laser systems[C]//SPIE Proceedings, Laser-Induced Damage in Optical Materials. Boulder, USA. 1994: 559-568.

    [72] [72] NEGRES R A, DEMANGE P, DEMOS S G. Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate[J]. Opt Lett, 2005, 30(20): 2766-2768.

    [73] [73] LIU F, JIAO H F, MA B, et al. Influence of the surface and subsurface contaminants on laser-induced damage threshold of anti-reflection sub-wavelength structures working at 1 064 nm[J]. Opt Laser Technol, 2020, 127: 106144.

    [74] [74] FLOREA C, SANGHERA J, BUSSE L, et al. Improved laser damage threshold for chalcogenide glasses through surface microstructuring[C]//SPIE Proceedings, Photonic and Phononic Properties of Engineered Nanostructures. San Francisco, USA. 2011: 181-213.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Yue, JIANG Benxue, FENG Tao, ZHANG Long. Research Progress on Laser Induced Damage to Transparent Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 973

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 8, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Benxue JIANG (jiangbx@siom.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics