Laser & Optoelectronics Progress, Volume. 58, Issue 7, 0700001(2021)

Research Progress in Laser-Controlled Optimization of Noble Metal Nanocomposite Configuration and Light Excitation Application

Linlin Xu, Yue Tian, Anxin Jiao, Ming Chen*, and Feng Chen**
Author Affiliations
  • School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan , Shandong 250100, China
  • show less
    References(216)

    [1] Park M, Jung H, Jeong Y et al. Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering[J]. ACS Nano, 11, 438-443(2017).

    [2] Zhang S D, Geryak R, Geldmeier J et al. Synthesis, assembly, and applications of hybrid nanostructures for biosensing[J]. Chemical Reviews, 117, 12942-13038(2017).

    [3] Lin Z S, He L L. Recent advance in SERS techniques for food safety and quality analysis: a brief review[J]. Current Opinion in Food Science, 28, 82-87(2019).

    [4] Cai B, Henning S, Herranz J et al. Nanostructuring noble metals as unsupported electrocatalysts for polymer electrolyte fuel cells[J]. Advanced Energy Materials, 7, 1700548(2017).

    [5] Liu X Q, Iocozzia J, Wang Y et al. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation[J]. Energy & Environmental Science, 10, 402-434(2017).

    [6] Loza K, Heggen M, Epple M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals[J]. Advanced Functional Materials, 30, 1909260(2020).

    [7] Gilroy K D, Ruditskiy A, Peng H C et al. Bimetallic nanocrystals: syntheses, properties, and applications[J]. Chemical Reviews, 116, 10414-10472(2016).

    [8] Mangadlao J D, Cao P F, Choi D et al. Photoreduction of graphene oxide and photochemical synthesis of graphene-metal nanoparticle hybrids by ketyl radicals[J]. ACS Applied Materials & Interfaces, 9, 24887-24898(2017).

    [9] Chen Z, Liu C, Cao F et al. DNA metallization: Principles, methods, structures, and applications[J]. Chemical Society Reviews, 47, 4017-4072(2018).

    [10] Koczkur K M, Mourdikoudis S, Polavarapu L et al. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis[J]. Dalton Transactions (Cambridge, England), 44, 17883-17905(2015).

    [11] Dong H, Zhang C, Liu X et al. Materials chemistry and engineering in metal halide perovskite lasers[J]. Chemical Society Reviews, 49, 951-982(2020).

    [12] Zhang D S, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications[J]. Chemical Reviews, 117, 3990-4103(2017).

    [13] Wang X S, Huang Y K, Shen B et al. Advances of short and ultrashort pulse laser induced plasma micromachining[J]. Laser & Optoelectronics Progress, 57, 111405(2020).

    [14] Palneedi H, Park J H, Maurya D et al. Laser processing of metal oxides: Laser irradiation of metal oxide films and nanostructures: applications and advances (adv. mater. 14/2018)[J]. Advanced Materials, 30, 1870094(2018).

    [15] Gökce B, Filipescu M, Barcikowski S. Recent progress in laser materials processing and synthesis[J]. Applied Surface Science, 513, 145762(2020).

    [16] Fan L S, Zhang S W, Zhang Q L et al. Research progress on fabrication of one-dimensional well-ordered oxide nanostructures by pulsed laser deposition[J]. Laser & Optoelectronics Progress, 57, 190001(2020).

    [17] Pan B, Xiao J, Li J et al. Carbyne with finite length: The one-dimensional sp carbon[J]. Science Advances, 1, e1500857(2015).

    [18] Chen C H, Wu D Y, Li Z et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution[J]. Advanced Energy Materials, 9, 1803913(2019).

    [19] Li Z, Fu J Y, Feng Y et al. A silver catalyst activated by stacking faults for the hydrogen evolution reaction[J]. Nature Catalysis, 2, 1107-1114(2019).

    [20] Kabashin A V, Singh A, Swihart M T et al. Laser-processed nanosilicon: A multifunctional nanomaterial for energy and healthcare[J]. ACS Nano, 13, 9841-9867(2019).

    [21] Liu H, Jin P, Xue Y M et al. Photochemical synthesis of ultrafine cubic boron nitride nanoparticles under ambient conditions[J]. Angewandte Chemie International Edition, 54, 7051-7054(2015).

    [22] Ravnik J, Vaskivskyi I, Gerasimenko Y et al. Strain-induced metastable topological networks in laser-fabricated TaS2 polytype heterostructures for nanoscale devices[J]. ACS Applied Nano Materials, 2, 3743-3751(2019).

    [23] Weng B, Qi M Y, Han C et al. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective[J]. ACS Catalysis, 9, 4642-4687(2019).

    [24] Wenderich K, MethodsMul G. Mechanism, and applications of photodeposition in photocatalysis: A review[J]. Chemical Reviews, 116, 14587-14619(2016).

    [25] Wang N N, Guan B, Zhao Y et al. Sub-10 nm Ag nanoparticles/graphene oxide: Controllable synthesis, size-dependent and extremely ultrahigh catalytic activity[J]. Small, 15, 1901701(2019).

    [26] Pérez-Mayoral E, Calvino-Casilda V, Soriano E. Metal-supported carbon-based materials: Opportunities and challenges in the synthesis of valuable products[J]. Catalysis Science & Technology, 6, 1265-1291(2016).

    [27] Sutter P, Li Y, Argyropoulos C et al. In situ electron microscopy of plasmon-mediated nanocrystal synthesis[J]. Journal of the American Chemical Society, 139, 6771-6776(2017).

    [28] Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles[J]. Physical Chemistry Chemical Physics, 11, 3805-3821(2009).

    [29] Yang G W. Laser ablation in liquids: Applications in the synthesis of nanocrystals[J]. Progress in Materials Science, 52, 648-698(2007).

    [30] Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?[J]. Physical Chemistry Chemical Physics, 15, 3027-3046(2013).

    [31] Xiao J, Liu P, Wang C X et al. External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly[J]. Progress in Materials Science, 87, 140-220(2017).

    [32] Saraeva I N, Kudryashov S I, Rudenko A A et al. Effect of fs/ps laser pulsewidth on ablation of metals and silicon in air and liquids, and on their nanoparticle yields[J]. Applied Surface Science, 470, 1018-1034(2019).

    [33] Lam J, Amans D, Chaput F et al. Γ-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: A plasma analysis[J]. Physical Chemistry Chemical Physics: PCCP, 16, 963-973(2014).

    [34] DellʼAglio M, Gaudiuso R, De Pascale O et al. Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production[J]. Applied Surface Science, 348, 4-9(2015).

    [35] Perez D, Béland L K, Deryng D et al. Numerical study of the thermal ablation of wet solids by ultrashort laser pulses[J]. Physical Review B, 77, 014108(2008).

    [36] Tan D Z, Zhou S F, Qiu J R et al. Preparation of functional nanomaterials with femtosecond laser ablation in solution[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 17, 50-68(2013).

    [37] Sakka T, Masai S, Fukami K et al. Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 981-985(2009).

    [38] de Giacomo A, Dell'Aglio M, Santagata A et al. Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production[J]. Physical Chemistry Chemical Physics: PCCP, 15, 3083-3092(2013).

    [39] Liu K, Chen J, Qu H S et al. Bubble dimer dynamics induced by dual laser beam ablation in liquid[J]. Applied Physics Letters, 113, 021902(2018).

    [40] Yang C, Feng G Y, Dai S Y et al. Femtosecond pulsed laser ablation in microfluidics for synthesis of photoluminescent ZnSe quantum dots[J]. Applied Surface Science, 414, 205-211(2017).

    [41] Arce V B, Santillán J M J, Muñetón Arboleda D et al. Characterization and stability of silver nanoparticles in starch solution obtained by femtosecond laser ablation and salt reduction[J]. The Journal of Physical Chemistry C, 121, 10501-10513(2017).

    [42] Labutin T A, Lednev V N, Ilyin A A et al. Femtosecond laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 31, 90-118(2016).

    [43] Wang J B, Yang G W. Phase transformation between diamond and graphite in preparation of diamonds by pulsed-laser induced liquid-solid interface reaction[J]. Journal of Physics: Condensed Matter, 11, 7089-7094(1999).

    [44] Yang L, May P W, Yin L et al. Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid[J]. Diamond and Related Materials, 6, 725-729(2007).

    [45] Du X W, Qin W J, Lu Y W et al. Face-centered-cubic Si nanocrystals prepared by microsecond pulsed laser ablation[J]. Journal of Applied Physics, 102, 013518(2007).

    [46] Wei S Y, Yamamura T, Kajiya D et al. White-light-emitting silicon nanocrystal generated by pulsed laser ablation in supercritical fluid: investigation of spectral components as a function of excitation wavelengths and aging time[J]. The Journal of Physical Chemistry C, 116, 3928-3934(2012).

    [47] Liang Y, Liu P, Li H B et al. Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance[J]. CrystEngComm, 14, 3291-3296(2012).

    [48] Yang S K, Kiraly B, Wang W Y et al. Fabrication and characterization of beaded SiC quantum rings with anomalous red spectral shift[J]. Advanced Materials, 24, 5598-5603(2012).

    [49] Yang L, May P W, Yin L et al. Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solution[J]. Journal of Nanoparticle Research, 9, 1181-1185(2007).

    [50] Xiao J, Wu Q L, Liu P et al. Highly stable sub-5 nm Sn₆O₄(OH)₄ nanocrystals with ultrahigh activity as advanced photocatalytic materials for photodegradation of methyl orange[J]. Nanotechnology, 25, 135702(2014).

    [51] Zhang H W, Duan G T, Li Y et al. Leaf-like tungsten oxide nanoplatelets induced by laser ablation in liquid and subsequent aging[J]. Crystal Growth & Design, 12, 2646-2652(2012).

    [52] Zhang H M, Liang C H, Tian Z F et al. Organization of Mn3O4 nanoparticles into γ-MnOOH nanowires via hydrothermal treatment of the colloids induced by laser ablation in water[J]. CrystEngComm, 13, 1063-1066(2011).

    [53] Niu K Y, Yang J, Kulinich S A et al. Morphology control of nanostructures via surface reaction of metal nanodroplets[J]. Journal of the American Chemical Society, 132, 9814-9819(2010).

    [54] Genc Oztoprak B, Akman E, Hanon M M et al. Laser welding of copper with stellite 6 powder and investigation using LIBS technique[J]. Optics & Laser Technology, 45, 748-755(2013).

    [55] Yan Z J, Bao R Q, Chrisey D B. Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid[J]. Chemical Physics Letters, 497, 205-207(2010).

    [56] Fu H, Liu G Q, Bao H M et al. Ultrathin hexagonal PbO nanosheets induced by laser ablation in water for chemically trapping surface-enhanced Raman spectroscopy chips and detection of trace gaseous H2S[J]. ACS Applied Materials & Interfaces, 12, 23330-23339(2020).

    [57] Liang Y, Liu P, Xiao J et al. A microfibre assembly of an iron-carbon composite with giant magnetisation[J]. Scientific Reports, 3, 3051(2013).

    [58] Luo R C, Li C, Du X W et al. Direct conversion of bulk metals to size-tailored, monodisperse spherical non-coinage-metal nanocrystals[J]. Angewandte Chemie International Edition, 54, 4787-4791(2015).

    [59] Xiao J, Liu P, Liang Y et al. High aspect ratio β-MnO2 nanowires and sensor performance for explosive gases[J]. Journal of Applied Physics, 114, 073513(2013).

    [60] Liang D W, Wu S L, Wang P P et al. Recyclable chestnut-like Fe3O4@C@ZnSnO3 core-shell particles for the photocatalytic degradation of 2,‍5-dichlorophenol[J]. RSC Advances, 4, 26201-26206(2014).

    [61] Liu P, Liang Y, Lin X Z et al. A general strategy to fabricate simple polyoxometalate nanostructures: Electrochemistry-assisted laser ablation in liquid[J]. ACS Nano, 5, 4748-4755(2011).

    [62] Liu J, Cai Y Y, Tian Z F et al. Highly oriented Ge-doped hematite nanosheet arrays for photoelectrochemical water oxidation[J]. Nano Energy, 9, 282-290(2014).

    [63] Liang Y, Liu P, Li H B et al. ZnMoO4 micro- and nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties[J]. Crystal Growth & Design, 12, 4487-4493(2012).

    [64] Yan Z J, Compagnini G, Chrisey D B. Generation of AgCl cubes by excimer laser ablation of bulk Ag in aqueous NaCl solutions[J]. The Journal of Physical Chemistry C, 115, 5058-5062(2011).

    [65] Tian Z F, Liang C H, Liu J et al. Zinc stannate nanocubes and nanourchins with high photocatalytic activity for methyl orange and 2, 5-DCP degradation[J]. Journal of Materials Chemistry, 22, 17210-17214(2012).

    [66] Ran P, Jiang L, Li X et al. Femtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applications[J]. Small, 15, 1804899(2019).

    [67] Shao Q, Wang Y, Yang S Z et al. Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis[J]. ACS Nano, 12, 11625-11631(2018).

    [68] Barth S, Seifner M S, Maldonado S. Metastable group IV allotropes and solid solutions: Nanoparticles and nanowires[J]. Chemistry of Materials, 32, 2703-2741(2020).

    [69] Fu Y P, Wu T, Wang J et al. Stabilization of the metastable lead iodide perovskite phase via surface functionalization[J]. Nano Letters, 17, 4405-4414(2017).

    [70] Sokolikova M S, Mattevi C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides[J]. Chemical Society Reviews, 49, 3952-3980(2020).

    [71] Singh A K, Zhou L, Shinde A et al. Electrochemical stability of metastable materials[J]. Chemistry of Materials, 29, 10159-10167(2017).

    [72] Xiao J, Ouyang G, Liu P et al. Reversible nanodiamond-carbon onion phase transformations[J]. Nano Letters, 14, 3645-3652(2014).

    [73] Liu P, Cao Y L, Wang C X et al. Micro- and nanocubes of carbon with C8-like and blue luminescence[J]. Nano Letters, 8, 2570-2575(2008).

    [74] Xiao J, Li J L, Liu P et al. A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion[J]. Nanoscale, 6, 15098-15106(2014).

    [75] Xiao J, Liu P, Liang Y et al. Super-stable ultrafine beta-tungsten nanocrystals with metastable phase and related magnetism[J]. Nanoscale, 5, 899-903(2013).

    [76] Chen X Y, Cui H, Liu P et al. Double-layer hexagonal Fe nanocrystals and magnetism[J]. Chemistry of Materials, 20, 2035-2038(2008).

    [77] Zeng Z D, Zeng Q S, Mao W L et al. Phase transitions in metastable phases of silicon[J]. Journal of Applied Physics, 115, 103514(2014).

    [78] Liu P, Cao Y L, Chen X Y et al. Trapping high-pressure nanophase of Ge upon laser ablation in liquid[J]. Crystal Growth & Design, 9, 1390-1393(2009).

    [79] Liu P, Cao Y L, Cui H et al. Synthesis of GaN nanocrystals through phase transition from hexagonal to cubic structures upon laser ablation in liquid[J]. Crystal Growth & Design, 8, 559-563(2008).

    [80] Wang J B, Yang G W, Zhang C Y et al. Cubic-BN nanocrystals synthesis by pulsed laser induced liquid-solid interfacial reaction[J]. Chemical Physics Letters, 367, 10-14(2003).

    [81] Yang G W, Wang J B. Carbon nitride nanocrystals having cubic structure using pulsed laser induced liquid-solid interfacial reaction[J]. Applied Physics A, 71, 343-344(2000).

    [82] Tan D Z, Lin G, Liu Y et al. Synthesis of nanocrystalline cubic zirconia using femtosecond laser ablation[J]. Journal of Nanoparticle Research, 13, 1183-1190(2011).

    [83] Singh P, Kumar R, Singh R K. Progress on transition metal-doped ZnO nanoparticles and its application[J]. Industrial & Engineering Chemistry Research, 58, 17130-17163(2019).

    [84] Chen S, Huang D L, Xu P et al. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: Will we stop with photocorrosion?[J]. Journal of Materials Chemistry A, 8, 2286-2322(2020).

    [85] Zhu S S, Zhang P P, Chang L et al. Photochemical fabrication of 3D hierarchical Mn3O4/H-TiO2 composite films with excellent electrochemical capacitance performance[J]. Physical Chemistry Chemical Physics, 18, 8529-8536(2016).

    [86] Berr M, Vaneski A, Susha A S et al. Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation[J]. Applied Physics Letters, 97, 093108(2010).

    [87] Peled A, Naddaka M, Lellouche J P. Controllable photodeposition of metal nanoparticles on a photoreactive silica support[J]. Journal of Materials Chemistry, 22, 7580-7853(2012).

    [88] Sun L L, Zhao D X, Song Z M et al. Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity[J]. Journal of Colloid and Interface Science, 363, 175-181(2011).

    [89] Ma J Q, Guo X H, Ge H G et al. Seed-mediated photodeposition route to Ag-decorated SiO2@TiO2 microspheres with ideal core-shell structure and enhanced photocatalytic activity[J]. Applied Surface Science, 434, 1007-1014(2018).

    [90] Wang X W, Wang W Y, Miao Y Q et al. Facet-selective photodeposition of gold nanoparticles on faceted ZnO crystals for visible light photocatalysis[J]. Journal of Colloid and Interface Science, 475, 112-118(2016).

    [91] Yang S K, Li M Y, Zhu X et al. Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO[J]. The Journal of Physical Chemistry C, 119, 14312-14318(2015).

    [92] Uma K, Arjun N, Pan G T et al. The photodeposition of surface plasmon Ag metal on SiO2@α-Fe2O3 nanocomposites sphere for enhancement of the photo-Fenton behavior[J]. Applied Surface Science, 425, 377-383(2017).

    [93] Zhou N, Ye C, Polavarapu L et al. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing[J]. Nanoscale, 7, 9025-9032(2015).

    [94] Read C G, Steinmiller E M P, Choi K S. Atomic plane-selective deposition of gold nanoparticles on metal oxide crystals exploiting preferential adsorption of additives[J]. Journal of the American Chemical Society, 131, 12040-12041(2009).

    [95] Zhang F X, Chen J X, Zhang X et al. Synthesis of titania-supported platinum catalyst: The effect of pH on morphology control and valence state during photodeposition[J]. Langmuir, 20, 9329-9334(2004).

    [96] Choi D, Jang D J. Photodeposition of gold nanoparticles on silica nanospheres using carbon dots as excellent electron donors[J]. New Journal of Chemistry, 42, 14717-14720(2018).

    [97] Xu L L, Zhang H, Tian Y et al. Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater[J]. Talanta, 194, 680-688(2019).

    [98] Xu L L, Li S, Li F et al. Ultraviolet light-induced photochemical reaction for controlled fabrication of Ag nano-Islands on ZnO nanosheets: An advanced inexpensive substrate for ultrasensitive surface-enhanced Raman scattering analysis[J]. Optical Materials Express, 7, 3137-3146(2017).

    [99] de Corrado J M, Fernando J F S, Shortell M P et al. ZnO colloid crystal facet-type determines both Au photodeposition and photocatalytic activity[J]. ACS Applied Nano Materials, 2, 7856-7869(2019).

    [100] Zhang X F, Wang Z G, Zhong Y X et al. TiO2 nanorods loaded with AuPt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol[J]. Journal of Physics and Chemistry of Solids, 126, 27-32(2019).

    [101] Klein M, Nadolna J, Gołąbiewska A et al. The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO2 by radiolytic method[J]. Applied Surface Science, 378, 37-48(2016).

    [102] Bhardwaj S, Pal B. Photodeposition of Ag and Cu binary co-catalyst onto TiO2 for improved optical and photocatalytic degradation properties[J]. Advanced Powder Technology, 29, 2119-2128(2018).

    [103] Haselmann G M, Baumgartner B, Wang J et al. In situ Pt photodeposition and methanol photooxidation on Pt/TiO2: Pt-loading-dependent photocatalytic reaction pathways studied by liquid-phase infrared spectroscopy[J]. ACS Catalysis, 10, 2964-2977(2020).

    [104] Yamamoto M, Minoura Y, Akatsuka M et al. Comparison of platinum photodeposition processes on two types of titanium dioxide photocatalysts[J]. Physical Chemistry Chemical Physics, 22, 8730-8738(2020).

    [105] Singh J, Sahu K, Pandey A et al. Atom beam sputtered Ag-TiO2 plasmonic nanocomposite thin films for photocatalytic applications[J]. Applied Surface Science, 411, 347-354(2017).

    [106] Georgakilas V, Otyepka M, Bourlinos A B et al. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications[J]. Chemical Reviews, 112, 6156-6214(2012).

    [107] Gao C, Guo Z, Liu J H et al. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors[J]. Nanoscale, 4, 1948-1963(2012).

    [108] Lin Y, Connell J W. Advances in 2D boron nitride nanostructures: Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene[J]. Nanoscale, 4, 6908-6939(2012).

    [109] Yin F, Gu B B, Lin Y N et al. Functionalized 2D nanomaterials for gene delivery applications[J]. Coordination Chemistry Reviews, 347, 77-97(2017).

    [110] Wang X W, Cheng L. Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy[J]. Nanoscale, 11, 15685-15708(2019).

    [111] Wu L Y, Wu K, Lei C X et al. Surface modifications of boron nitride nanosheets for poly(vinylidene fluoride) based film capacitors: Advantages of edge-hydroxylation[J]. Journal of Materials Chemistry A, 7, 7664-7674(2019).

    [112] Chettri P, Vendamani V S, Tripathi A et al. Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue[J]. Applied Surface Science, 406, 312-318(2017).

    [113] Fan Z, Kanchanapally R, Ray P C. Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing[J]. The Journal of Physical Chemistry Letters, 4, 3813-3818(2013).

    [114] Lai H S, Xu F G, Zhang Y et al. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications[J]. Journal of Materials Chemistry B, 6, 4008-4028(2018).

    [115] Tian Y, Zhang H, Xu L L et al. An additional electron-phonon coupling enhancement for improving SERS activity by supporting core-shell Au@Ag particles on carbon nanotubes[J]. Applied Physics Letters, 115, 101901(2019).

    [116] Xu L L, Zhang H, Tian Y et al. Modified photochemical strategy to support highly-purity, dense and monodisperse Au nanospheres on graphene oxide for optimizing SERS detection[J]. Talanta, 209, 120535(2020).

    [117] Zhang Y C, He S, Guo W X et al. Surface-plasmon-driven hot electron photochemistry[J]. Chemical Reviews, 118, 2927-2954(2018).

    [118] Zhang J, Li S Z, Wu J S et al. Plasmon-mediated synthesis of silver triangular bipyramids[J]. Angewandte Chemie International Edition, 48, 7787-7791(2009).

    [119] Tang B, Xu S P, An J et al. Photoinduced shape conversion and reconstruction of silver nanoprisms[J]. The Journal of Physical Chemistry C, 113, 7025-7030(2009).

    [120] Personick M L, Langille M R, Zhang J et al. Plasmon-mediated synthesis of silver cubes with unusual twinning structures using short wavelength excitation[J]. Small, 9, 1947-1953(2013).

    [121] Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties[J]. Chemistry of Materials, 20, 5186-5190(2008).

    [122] Xue C, Métraux G S, Millstone J E et al. Mechanistic study of photomediated triangular silver nanoprism growth[J]. Journal of the American Chemical Society, 130, 8337-8344(2008).

    [123] Zhang J, Langille M R, Mirkin C A. Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds[J]. Nano Letters, 11, 2495-2498(2011).

    [124] Brus L. Plasmon-driven chemical synthesis: Growing gold nanoprisms with light[J]. Nature Materials, 15, 824-825(2016).

    [125] Jin R, Cao Y, Mirkin C A et al. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science, 294, 1901-1903(2001).

    [126] Zhai Y, DuChene J S, Wang Y C et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis[J]. Nature Materials, 15, 889-895(2016).

    [127] Xu L L, Li S, Zhang H et al. Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced Raman scattering spectroscopy[J]. Optics Express, 25, 7408-7417(2017).

    [128] Langille M R, Zhang J, Mirkin C A. Plasmon-mediated synthesis of heterometallic nanorods and icosahedra[J]. Angewandte Chemie International Edition, 50, 3543-3547(2011).

    [129] Qiu J J, Richey N E, DuChene J S et al. Surface plasmon-mediated chemical solution deposition of Cu nanoparticle films[J]. The Journal of Physical Chemistry C, 120, 20775-20780(2016).

    [130] Forcherio G T, Baker D R, Boltersdorf J et al. Targeted deposition of platinum onto gold nanorods by plasmonic hot electrons[J]. The Journal of Physical Chemistry C, 122, 28901-28909(2018).

    [131] Habib A, King M E, Etemad L L et al. Plasmon-mediated synthesis of hybrid silver-platinum nanostructures[J]. The Journal of Physical Chemistry C, 124, 6853-6860(2020).

    [132] Langer J, de Jimenez Aberasturi D, Aizpurua J et al. Present and future of surface-enhanced Raman scattering[J]. ACS Nano, 14, 28-117(2020).

    [133] He J, Qiao Y, Zhang H B et al. Gold-silver nanoshells promote wound healing from drug-resistant bacteria infection and enable monitoring via surface-enhanced Raman scattering imaging[J]. Biomaterials, 234, 119763(2020).

    [134] Chen Y S, Zhang Y X, Pan F et al. Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons[J]. ACS Nano, 10, 8169-8179(2016).

    [135] Wei W, Du Y X, Zhang L M et al. Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires[J]. Journal of Materials Chemistry C, 6, 8793-8803(2018).

    [136] Hao N Y, Chen M, Yang H et al. pomegranate-like” plasmonic nanoreactors with accessible high-density hotspots for in situ SERS monitoring of catalytic reactions[J]. Analytical Chemistry, 92, 4115-4122(2020).

    [137] Zhou Z F, Lu J L, Wang J Y et al. Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 234, 118250(2020).

    [138] Li H Z, Yang Q, Hou J et al. Bioinspired micropatterned superhydrophilic Au-areoles for surface-enhanced Raman scattering (SERS) trace detection[J]. Advanced Functional Materials, 28, 1800448(2018).

    [139] Zong C, Xu M X, Xu L J et al. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges[J]. Chemical Reviews, 118, 4946-4980(2018).

    [140] Yaseen T, Pu H B, Sun D W. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends[J]. Trends in Food Science & Technology, 72, 162-174(2018).

    [141] Radziuk D, Moehwald H. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells[J]. Physical Chemistry Chemical Physics, 17, 21072-21093(2015).

    [142] Zrimsek A B, Wong N L, van Duyne R P. Single molecule surface-enhanced Raman spectroscopy: A critical analysis of the bianalyte versus isotopologue proof[J]. The Journal of Physical Chemistry C, 120, 5133-5142(2016).

    [143] Zrimsek A B, Chiang N H, Mattei M et al. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy[J]. Chemical Reviews, 117, 7583-7613(2017).

    [144] dos Santos D, Temperini M L A, Brolo A G. Intensity fluctuations in single-molecule surface-enhanced Raman scattering[J]. Accounts of Chemical Research, 52, 456-464(2019).

    [145] Choi H K, Lee K S, Shin H H et al. Single-molecule surface-enhanced Raman scattering as a probe of single-molecule surface reactions: Promises and current challenges[J]. Accounts of Chemical Research, 52, 3008-3017(2019).

    [146] Sigle D O, Kasera S, Herrmann L O et al. Observing single molecules complexing with cucurbit[7]uril through nanogap surface-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry Letters, 7, 704-710(2016).

    [147] Chen X J, Cabello G, Wu D Y et al. Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 21, 54-80(2014).

    [148] Song D, Yang R, Long F et al. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants[J]. Journal of Environmental Sciences, 80, 14-34(2019).

    [149] Cheng L, Ma C S, Yang G et al. Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy[J]. Journal of Materials Chemistry A, 2, 4534-4542(2014).

    [150] Jiang H Z, Xu D P, Kang W G et al. Fractal study and SERS effect of silver nanowires with high surface roughness[J]. Acta Optica Sinica, 39, 0716001(2019).

    [151] Liu K, Bai Y C, Zhang L et al. Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis[J]. Nano Letters, 16, 3675-3681(2016).

    [152] Zhang T, Zhou F, Hang L F et al. Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties[J]. Journal of Materials Chemistry C, 5, 11039-11045(2017).

    [153] Sun Y D, Li T. Composition-tunable hollow Au/Ag SERS nanoprobes coupled with target-catalyzed hairpin assembly for triple-amplification detection of miRNA[J]. Analytical Chemistry, 90, 11614-11621(2018).

    [154] Dai L W, Song L P, Huang Y J et al. Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in the near-infrared region and high performance surface-enhanced Raman scattering[J]. Langmuir, 33, 5378-5384(2017).

    [155] Zhang T, Sun Y Q, Hang L F et al. Periodic porous alloyed Au-Ag nanosphere arrays and their highly sensitive SERS performance with good reproducibility and high density of hotspots[J]. ACS Applied Materials & Interfaces, 10, 9792-9801(2018).

    [156] Jiang X, Sun X D, Yin D et al. Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect[J]. Physical Chemistry Chemical Physics, 19, 11212-11219(2017).

    [157] Huang J, Ma D Y, Chen F et al. Green in situ synthesis of clean 3D chestnutlike Ag/WO3-x nanostructures for highly efficient, recyclable and sensitive SERS sensing[J]. ACS Applied Materials & Interfaces, 9, 7436-7446(2017).

    [158] Lai Y C, Ho H C, Shih B W et al. High performance and reusable SERS substrates using Ag/ZnO heterostructure on periodic silicon nanotube substrate[J]. Applied Surface Science, 439, 852-858(2018).

    [159] Zhai Y, Zheng Y S, Ma Z Y et al. Synergistic enhancement effect for boosting Raman detection sensitivity of antibiotics[J]. ACS Sensors, 4, 2958-2965(2019).

    [160] Ji S D, Kou S, Wang M Q et al. Two-step synthesis of hierarchical Ag/Cu2O/ITO substrate for ultrasensitive and recyclable surface-enhanced Raman spectroscopy applications[J]. Applied Surface Science, 489, 1002-1009(2019).

    [161] Liu H, Wei L, Hua J H et al. Enzyme activity-modulated etching of gold nanobipyramids@MnO2 nanoparticles for ALP assay using surface-enhanced Raman spectroscopy[J]. Nanoscale, 12, 10390-10398(2020).

    [162] Tao G Q, Wang J. Gold nanorod@nanoparticle seed-SERSnanotags/graphene oxide plasmonic superstructured nanocomposities as an “on-off” SERS aptasensor[J]. Carbon, 133, 209-217(2018).

    [163] Zhang C Y, Hao R, Zhao B et al. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform[J]. Applied Surface Science, 409, 306-313(2017).

    [164] Zeng F Y, Xu D D, Zhan C et al. Surfactant-free synthesis of graphene oxide coated silver nanoparticles for SERS biosensing and intracellular drug delivery[J]. ACS Applied Nano Materials, 1, 2748-2753(2018).

    [165] Li J Y, Heng H, Lü J et al. Graphene oxide-assisted and DNA-modulated SERS of AuCu alloy for the fabrication of apurinic/apyrimidinic endonuclease 1 biosensor[J]. Small, 15, 1901506(2019).

    [166] Dizajghorbani-Aghdam H, Miller T S, Malekfar R et al. SERS-active Cu nanoparticles on carbon nitride support fabricated using pulsed laser ablation[J]. Nanomaterials, 9, 1223(2019).

    [167] Wang X T, Shi W X, Jin Z et al. Remarkable SERS activity observed from amorphous ZnO nanocages[J]. Angewandte Chemie International Edition, 56, 9851-9855(2017).

    [168] Yang L B, Yin D, Shen Y et al. Mesoporous semiconducting TiO2 with rich active sites as a remarkable substrate for surface-enhanced Raman scattering[J]. Physical Chemistry Chemical Physics, 19, 18731-18738(2017).

    [169] Lin J, Shang Y, Li X X et al. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle[J]. Advanced Materials, 29, 1604797(2017).

    [170] Han X X, Ji W, Zhao B et al. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications[J]. Nanoscale, 9, 4847-4861(2017).

    [171] Hou H, Wang P, Zhang J et al. Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity[J]. ACS Applied Materials & Interfaces, 7, 18038-18045(2015).

    [172] Li Z, Jiang S Z, Huo Y Y et al. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis[J]. Nanoscale, 10, 5897-5905(2018).

    [173] Ding G H, Xie S, Liu Y et al. Graphene oxide-silver nanocomposite as SERS substrate for dye detection: Effects of silver loading amount and composite dosage[J]. Applied Surface Science, 345, 310-318(2015).

    [174] Jiang Y, Wang J, Malfatti L et al. Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection[J]. Applied Surface Science, 450, 451-460(2018).

    [175] Alamri M, Sakidja R, Goul R et al. Plasmonic Au nanoparticles on 2D MoS2/graphene van der waals heterostructures for high-sensitivity surface-enhanced Raman spectroscopy[J]. ACS Applied Nano Materials, 2, 1412-1420(2019).

    [176] Zhang N, Tong L M, Zhang J. Graphene-based enhanced Raman scattering toward analytical applications[J]. Chemistry of Materials, 28, 6426-6435(2016).

    [177] Tan Y, Ma L N, Gao Z B et al. Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering[J]. Nano Letters, 17, 2621-2626(2017).

    [178] Wang Z Q, Wu S S, Colombi Ciacchi L et al. Graphene-based nanoplatforms for surface-enhanced Raman scattering sensing[J]. The Analyst, 143, 5074-5089(2018).

    [179] Zhang H, Li G H, Li S et al. Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy[J]. Applied Surface Science, 457, 684-694(2018).

    [180] Zhang H, Cui Q Q, Xu L L et al. Blue laser-induced photochemical synthesis of CuAg nanoalloys on h-BN supports with enhanced SERS activity for trace-detection of residual pesticides on tomatoes[J]. Journal of Alloys and Compounds, 825, 153996(2020).

    [181] Chen D Y, Li B L, Pu Q M et al. Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics[J]. Journal of Hazardous Materials, 373, 303-312(2019).

    [182] Zhang H B, Zhang P, Qiu M et al. Ultrasmall MoOx clusters as a novel cocatalyst for photocatalytic hydrogen evolution[J]. Advanced Materials, 31, 1804883(2019).

    [183] Wang P, Wu Y H, Cai B et al. Solution-processable perovskite solar cells toward commercialization: Progress and challenges[J]. Advanced Functional Materials, 29, 1807661(2019).

    [184] Li A, Wang T, Li C C et al. Adjusting the reduction potential of electrons by quantum confinement for selective photoreduction of CO2 to methanol[J]. Angewandte Chemie International Edition, 58, 3804-3808(2019).

    [185] Li A, Zhu W J, Li C C et al. Rational design of yolk-shell nanostructures for photocatalysis[J]. Chemical Society Reviews, 48, 1874-1907(2019).

    [186] Yang X G, Wang D W. Photocatalysis: from fundamental principles to materials and applications[J]. ACS Applied Energy Materials, 1, 6657-6693(2018).

    [187] Liu L Q, Zhang X N, Yang L F et al. Metal nanoparticles induced photocatalysis[J]. National Science Review, 4, 761-780(2017).

    [188] Hao R G, Kong X P, Zhao Z et al. In-situ electrochemical-photoreduction synthesis and photocatalytic performance of Pd/BiF3 thin films[J]. Acta Optica Sinica, 40, 1831001(2020).

    [189] Zhang Z L, Zhang C Y, Zheng H R et al. Plasmon-driven catalysis on molecules and nanomaterials[J]. Accounts of Chemical Research, 52, 2506-2515(2019).

    [190] Waiskopf N, Ben-Shahar Y, Banin U. Photocatalytic hybrid semiconductor-metal nanoparticles: from synergistic properties to emerging applications‍[J]. Advanced Materials, 30, 1706697(2018).

    [191] Gao W Q, Liu Q L, Zhang S et al. Electromagnetic induction derived micro-electric potential in metal-semiconductor core-shell hybrid nanostructure enhancing charge separation for high performance photocatalysis[J]. Nano Energy, 71, 104624(2020).

    [192] Li J Y, Yan P, Li K L et al. Cu supported on polymeric carbon nitride for selective CO2 reduction into CH4: A combined kinetics and thermodynamics investigation[J]. Journal of Materials Chemistry A, 7, 17014-17021(2019).

    [193] Hu J Y, Zhang S S, Cao Y H et al. Novel highly active anatase/rutile TiO2 photocatalyst with hydrogenated heterophase interface structures for photoelectrochemical water splitting into hydrogen[J]. ACS Sustainable Chemistry & Engineering, 6, 10823-10832(2018).

    [194] Yan B X, Wang Y C, Jiang X Y et al. Flexible photocatalytic composite film of ZnO-microrods/polypyrrole[J]. ACS Applied Materials & Interfaces, 9, 29113-29119(2017).

    [195] Liu Y, Ma Y J, Liu W W et al. Facet and morphology dependent photocatalytic hydrogen evolution with CdS nanoflowers using a novel mixed solvothermal strategy‍[J]. Journal of Colloid and Interface Science, 513, 222-230(2018).

    [196] Dong P Y, Hou G H, Xi X G et al. WO3-based photocatalysts: Morphology control, activity enhancement and multifunctional applications‍[J]. Environmental Science: Nano, 4, 539-557(2017).

    [197] Zhang L P, Ran J R, Qiao S Z et al. Characterization of semiconductor photocatalysts[J]. Chemical Society Reviews, 48, 5184-5206(2019).

    [198] Zeng H B, Cai W P, Liu P S et al. ZnO-based hollow nanoparticles by selective etching: Elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis[J]. ACS Nano, 2, 1661-1670(2008).

    [199] Zeng H B, Liu P S, Cai W P et al. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity[J]. The Journal of Physical Chemistry C, 112, 19620-19624(2008).

    [200] Wang Z W, Wang Z Y, Wang D M et al. Ultra-small Sn2S3 porous nano-particles: An excellent photo-catalyst in the reduction of aqueous Cr(VI) under visible light irradiation[J]. RSC Advances, 6, 12286-12289(2016).

    [201] Li Q, Liang C H, Tian Z F et al. Core-shell TaxO@Ta2O5 structured nanoparticles: Laser ablation synthesis in liquid, structure and photocatalytic property[J]. CrystEngComm, 14, 3236-3240(2012).

    [202] Zhang H M, Liang C H, Tian Z F et al. Hydrothermal treatment of colloids induced via liquid-phase laser ablation: A new approach for hierarchical titanate nanostructures with enhanced photodegradation performance[J]. CrystEngComm, 13, 4676-4682(2011).

    [203] Cai Y Y, Ye Y X, Tian Z F et al. In situ growth of lamellar ZnTiO3 nanosheets on TiO2 tubular array with enhanced photocatalytic activity[J]. Physical Chemistry Chemical Physics, 15, 20203-20209(2013).

    [204] Lin Z Y, Liu P, Yan J H et al. Matching energy levels between TiO2 and α-Fe2O3 in a core-shell nanoparticle for visible-light photocatalysis[J]. Journal of Materials Chemistry A, 3, 14853-14863(2015).

    [205] Lin Z Y, Xiao J, Yan J H et al. Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes[J]. Journal of Materials Chemistry A, 3, 7649-7658(2015).

    [206] Lin Z Y, Li J L, Zheng Z Q et al. Electronic reconstruction of α-Ag2WO4 Nanorods for visible-light photocatalysis[J]. ACS Nano, 9, 7256-7265(2015).

    [207] Staude I, Miroshnichenko A E, Decker M et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 7, 7824-7832(2013).

    [208] Wu S L, Wang P P, Cai Y Y et al. Reduced graphene oxide anchored magnetic ZnFe2O4 nanoparticles with enhanced visible-light photocatalytic activity[J]. RSC Advances, 5, 9069-9074(2015).

    [209] Park H, Reddy D A, Kim Y et al. Synthesis of ultra-small palladium nanoparticles deposited on CdS nanorods by pulsed laser ablation in liquid: Role of metal nanocrystal size in the photocatalytic hydrogen production[J]. Chemistry - A European Journal, 23, 13112-13119(2017).

    [210] Liao L, Zhang Q H, Su Z H et al. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst[J]. Nature Nanotechnology, 9, 69-73(2014).

    [211] Lin Z Y, Xiao J, Li L H et al. Nanodiamond-embedded p-type copper(I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 6, 1501865(2016).

    [212] Guo W, Liu B. Liquid-phase pulsed laser ablation and electrophoretic deposition for chalcopyrite thin-film solar cell application[J]. ACS Applied Materials & Interfaces, 4, 7036-7042(2012).

    [213] Wang Z Y, Zhang H, Xu L L et al. Laser-induced fabrication of highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties[J]. RSC Advances, 6, 83337-83342(2016).

    [214] Yang R Y, Zhang Z Y, Xu L L et al. Laser-induced fabrication of highly branched CuS nanocrystals with excellent near-infrared absorption properties[J]. Chinese Physics B, 26, 076102(2017).

    [215] Yu Y, Yan L H, Si J H et al. Femtosecond laser assisted synthesis of gold nanorod and graphene hybrids and its photothermal property in the near-infrared region[J]. Journal of Physics and Chemistry of Solids, 132, 116-120(2019).

    [216] Ma C, Yan J, Huang Y et al. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion[J]. Science Advances, 4, eaas9894(2018).

    Tools

    Get Citation

    Copy Citation Text

    Linlin Xu, Yue Tian, Anxin Jiao, Ming Chen, Feng Chen. Research Progress in Laser-Controlled Optimization of Noble Metal Nanocomposite Configuration and Light Excitation Application[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0700001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 14, 2020

    Accepted: Nov. 18, 2020

    Published Online: Apr. 25, 2021

    The Author Email: Chen Ming (chenming@sdu.edu.cn), Chen Feng (drfchen@sdu.edu.cn)

    DOI:10.3788/LOP202158.0700001

    Topics