Optics and Precision Engineering, Volume. 30, Issue 21, 2752(2022)
Development of film elements and optics for neutron
[1] S TERRÓN, M MAGÁN, F SORDO et al. Union of Compact Accelerator-Driven Neutron Sources (UCANS) I & II Neutron applications laboratory for ESS-Bilbao. Physics Procedia, 26, 196-204(2012).
[2] A I ERKO. Modern Developments in X-ray and Neutron Optics(2008).
[3] M HINO, N L YAMADA et al. Supermirror neutron Guide system for neutron resonance spin echo spectrometers at a pulsed neutron source. Journal of Nuclear Science and Technology, 54, 1223-1232(2017).
[4] T KRIST, F MEZEI. Compact neutron optical elements. Physica B: Condensed Matter, 277, 208-209(2000).
[5] M NAGANO, F YAMAGA, D YAMAZAKI et al. High-precision figured thin supermirror substrates for multiple neutron focusing device. Journal of Physics: Conference Series, 340(2012).
[6] T KRIST, J PETERS, H M SHIMIZU et al. Transmission bender for polarizing neutrons. Physica B: Condensed Matter, 356, 197-200(2005).
[7] S V KOZHEVNIKOV, F RADU. Neutron methods for the direct determination of the magnetic induction in thick films. Journal of Magnetism and Magnetic Materials, 402, 83-93(2016).
[8] W H KRAAN, V N ZABENKIN, L A AXELROD et al. Algorithm of the computer modelling and a SESANS setup with adiabatic RF-flippers. Journal of Surface Investigation: x-Ray, Synchrotron and Neutron Techniques, 11, 1281-1288(2017).
[9] V BODNARCHUK, V SADILOV, S MANOSHIN et al. Expected performance of time-gradient magnetic field SESANS diffractometer at pulsed reactor IBR-2. Journal of Physics: Conference Series, 862(2017).
[10] MEZEI F, Novel polarized neutron devices: supermirror and spin component amplifier. Communications on Physics, 1, 81-85(1976).
[11] MEZEI F, Corrigendum and first experimental evidence on neutron supermirrors. Communications on Physics, 2, 41-43(1977).
[12] G E ICE, C R HUBBARD, B C LARSON et al. Kirkpatrick-Baez microfocusing optics for thermal neutrons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 539, 312-320(2005).
[13] C F MAJKRZAK, J F ANKNER. Supermirror neutron Guide coatings. San Diego, 1738, 150-158(92).
[14] T KRIST, C PAPPAS, T KELLER et al. The polarizing beam splitter Guide at BENSC. Physica B: Condensed Matter, 213/214, 939-941(1995).
[15] B BALLOT, F J SAMUEL, B FARNOUX. Supermirror neutron Guide. San Diego, 1738, 159-165(92).
[16] F MEZEI, M RUSSINA. Neutron beam extraction and delivery at spallation neutron sources. Physica B: Condensed Matter, 283, 318-322(2000).
[17] [17] 17张众, 王占山, 吴永荣, 等. 中子超镜的优化设计[J]. 原子能科学技术, 2010, 44(1): 84-88.ZHANGZH, WANGZH SH, WUY R, et al. Optimized design of neutron supermirror[J]. Atomic Energy Science and Technology, 2010, 44(1): 84-88. (in Chinese)
[18] T EBISAWA, N ACHIWA, S YAMADA et al. Neutron reflectivities of Ni-Mn and Ni-Ti multilayers for monochromators and supermirrors. Journal of Nuclear Science and Technology, 16, 647-659(1979).
[19] F MEZEI. Very high reflectivity supermirrors and their applications, 0983, 10-17(1989).
[20] O ELSENHANS, P BOENI, H P FRIEDLI et al. Thin films for neutron optics. San Diego, 1738, 130-140(92).
[21] D CLEMENS, P BÖNI, H P FRIEDLI et al. Polarizing Ti1-
[22] S ITOH, T KAMIYAMA, M FURUSAKA et al. Supermirror neutron Guide tube on Sirius, the high resolution powder diffractometer at KENS. Physica B: Condensed Matter, 242, 79-81(1997).
[23] P BÖNI. Supermirror-based beam devices. Physica B: Condensed Matter, 235, 1038-1043(1997).
[24] M HINO, H SUNOHARA, Y YOSHIMURA et al. Recent development of multilayer neutron mirror at KURRI. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 529, 54-58(2004).
[25] K SOYAMA, H TSUNODA, K MURAKAMI. Reflectivity enhancement of large
[26] K SOYAMA, R MARUYAMA, D YAMAZAKI et al. Supermirror Coatings for The New Spallation Source J-PARC.
[27] R MARUYAMA, D YAMAZAKI, T EBISAWA et al. Development of neutron supermirrors with large critical angle. Thin Solid Films, 515, 5704-5706(2007).
[28] R MARUYAMA, D YAMAZAKI, T EBISAWA et al. Development of high-reflectivity neutron supermirrors using an ion beam sputtering technique. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600, 68-70(2009).
[29] H JU, B J HEUSER. Effect of hydrogen on Ni∕Ti multilayer neutron monochromator performance. Applied Physics Letters, 90(2007).
[30] O ELSENHANS, P BÖNI, H P FRIEDLI et al. Development of Ni/Ti multilayer supermirrors for neutron optics. Thin Solid Films, 246, 110-119(1994).
[31] N ABHARANA, A BISWAS, P SARKAR et al. Effect of argon-nitrogen mixed ambient Ni sputtering on the interface diffusion of Ni/Ti periodic multilayers and supermirrors. Vacuum, 169, 108864(2019).
[32] M KITAGUCHI, M HINO, Y KAWABATA et al. Development of neutron resonance spin flipper for high resolution NRSE spectrometer. Physica B: Condensed Matter, 385/386, 1128-1130(2006).
[33] D DUBBERS, R VLAMING, E KLEMT. Bistable neutron spin flippers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 270, 95-98(1988).
[34] G DRABKIN, E I ZABIDAROV, A KOVALEV. Spontaneous magnetization and domain formation in ferromagnets near the Curie point. Journal of Experimental & Theoretical Physics, 42, 916-922(1975).
[35] A A SUMBATYAN, V N SLYUSAR’, A I OKOROKOV et al. Methods and devices for reversing neutron polarization. Instruments and Experimental Techniques, 52, 337-341(2009).
[36] T REKVELDT. Larmor labeling development. Physica B: Condensed Matter, 406, 2324-2332(2011).
[37] T REKVELDT, W KRAAN. Spin flippers for Larmor labeling methods in monochromatic and white neutron beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 629, 239-244(2011).
[38] W G BOUWMAN, M VAN OOSSANEN et al. Development of spin-echo small-angle neutron scattering. Journal of Applied Crystallography, 33, 767-770(2000).
[39] W G BOUWMAN, M THEO REKVELDT. Magnetic design of a spin-echo small-angle neutron-scattering instrument. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 496, 437-445(2003).
[40] M VAN OOSSANEN, W H KRAAN, W G BOUWMAN et al. Test of magnetised foils as a polarisation rotator for a spin echo small-angle neutron scattering instrument. Physica B: Condensed Matter, 277, 134-135(2000).
[41] R PYNN. Broadband spin flippers constructed from thin magnetic films. Physica B: Condensed Matter, 356, 178-181(2005).
[42] C P DUIF, S N GEURTS, W G BOUWMAN et al. A magnetised foil as inclined
[43] J L HE, Z ZHANG, Z H BAO et al. Effect of Cr interlayers on texture and magnetic properties of FeSi films with micrometer thickness. Applied Surface Science, 610, 155334(2023).
[44] J L HE, Z ZHANG, Z H BAO et al. Magnetized fesi film with micrometer thickness inserted with Cr layers as Π-flippers for neutron spin-echo spectrometry. SSRN Electronic Journal(2022).
[45] S HOLM-DAHLIN, M A OLSEN, M BERTELSEN et al. Optimization of performance, price, and background of long neutron guides for European spallation source. Quantum Beam Science, 3, 16(2019).
[46] K H ANDERSEN, D N ARGYRIOU, A J JACKSON et al. The instrument suite of the European Spallation Source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 957, 163402(2020).
[47] G D QUINN, O ZILCHA, J M ROWE et al. Failure analysis of a 41-m long neutron beam line Guide. Journal of the European Ceramic Society, 34, 3263-3270(2014).
[48] T AKIYOSHI, T EBISAWA, T KAWAI et al. Development of a supermirror neutron Guide tube. Journal of Nuclear Science and Technology, 29, 939-946(1992).
[49] I TAMURA, M SUZUKI, T HAZAWA et al. Performance of upgraded thermal neutron guides with supermirrors at JRR-3. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 529, 234-237(2004).
[50] A HOLLERING, N REBROVA, C KLAUSER et al. A non-depolarizing CuTi neutron supermirror Guide for PERC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1032, 166634(2022).
[51] H HÄSE, A KNÖPFLER, K FIEDERER et al. A long ballistic supermirror Guide for cold neutrons at ILL. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 485, 453-457(2002).
[52] A STUNAULT, A R WILDES, H M RØNNOW et al. Performances of a new focusing supermirror Guide on IN14. Physica B: Condensed Matter, 350, E683-E686(2004).
[53] S MÜHLBAUER, M STADLBAUER, P BÖNI et al. Performance of an elliptically tapered neutron Guide. Physica B: Condensed Matter, 385/386, 1247-1249(2006).
[54] S MÜHLBAUER, P G NIKLOWITZ, M STADLBAUER et al. Elliptic neutron guides—focusing on tiny samples. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 586, 77-80(2008).
[55] G E ICE, J W L PANG, C TULK et al. Design challenges and performance of nested neutron mirrors for microfocusing on SNAP. Journal of Applied Crystallography, 42, 1004-1008(2009).
[56] T ADAMS, G BRANDL, A CHACON et al. Versatile module for experiments with focussing neutron guides. Applied Physics Letters, 105, 123505(2014).
[57] G BRANDL, R GEORGII, S R DUNSIGER et al. Compact turnkey focussing neutron Guide system for inelastic scattering investigations. Applied Physics Letters, 107, 253505(2015).
[58] L D CUSSEN, D NEKRASSOV, C ZENDLER et al. Multiple reflections in elliptic neutron Guide tubes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 705, 121-131(2013).
[59] O ZIMMER. Imaging nested-mirror assemblies for efficient beam transport with tailored spectra(2).
[60] J KOHLBRECHER, D E FORANO. Refractive optical lenses as neutron focussing device for resolution improvement at the sans instrument(2000).
[61] D F R MILDNER, B HAMMOUDA, S R KLINE. A refractive focusing lens system for small-angle neutron scattering. Journal of Applied Crystallography, 38, 979-987(2005).
[62] P D KEARNEY, A G KLEIN, G I OPAT et al. Imaging and focusing of neutrons by a zone plate. Nature, 287, 313-314(1980).
[63] M ALTISSIMO, E DI FABRIZIO et al. Fresnel zone plates as neutron optical elements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 529, 148-151(2004).
[64] B ALEFELD, D SCHWAHN, T SPRINGER. New developments of small angle neutron scattering instruments with focussing. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 274, 210-216(1989).
[65] D LIU, M V GUBAREV, G RESTA et al. Axisymmetric grazing-incidence focusing optics for small-angle neutron scattering. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 686, 145-150(2012).
[66] D F R MILDNER, M V GUBAREV. Wolter optics for neutron focusing. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 634, S7-S11(2011).
[67] B KHAYKOVICH, M V GUBAREV, Y BAGDASAROVA et al. From X-ray telescopes to neutron scattering: using axisymmetric mirrors to focus a neutron beam. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 631, 98-104(2011).
[68] H HAYASHIDA, K SOYAMA, D YAMAZAKI et al. Development and demonstration of a multi-channel spheroidal focusing device for neutron beams. Journal of Physics: Conference Series, 528(2014).
[69] K YAMAMURA, M NAGANO, H TAKAI et al. Figuring of Plano-elliptical neutron focusing mirror by local wet etching. Optics Express, 17, 6414-6420(2009).
[70] T HOSOBATA, N L YAMADA, M HINO et al. Development of precision elliptic neutron-focusing supermirror. Optics Express, 25, 20012-20024(2017).
[71] S TAKEDA, Y YAMAGATA, N L YAMADA et al. Development of a large plano-elliptical neutron focusing supermirror with metallic substrates. Optics Express, 24, 12478-12488(2016).
[72] T HOSOBATA, N L YAMADA, M HINO et al. Elliptic neutron-focusing supermirror for illuminating small samples in neutron reflectometry. Optics Express, 27, 26807-26820(2019).
[73] M R DAYMOND, M W JOHNSON. An experimental test of a neutron silicon lens. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 485, 606-614(2002).
[74] R BARTMANN, N BEHR, A HILGER et al. New solid state lens for reflective neutron focusing. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 634, S104-S107(2011).
[75] H R WU, Y YANG, D S HUSSEY et al. Study of a nested neutron-focusing supermirror system for small-angle neutron scattering. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 940, 380-386(2019).
[76] G G SIMEONI, R G VALICU, G BORCHERT et al. Focusing adaptive-optics for neutron spectroscopy at extreme conditions. Applied Physics Letters, 107, 243503(2015).
[77] G E ICE, R I BARABASH, A KHOUNSARY. Nested mirrors for x-rays and neutrons, 7448, 93-100(2009).
Get Citation
Copy Citation Text
Zhong ZHANG, Qiya ZHANG, Jialian HE, Shengzhen YI, Zhanshan WANG, Qiushi HUANG, Kun WANG, Jun YU. Development of film elements and optics for neutron[J]. Optics and Precision Engineering, 2022, 30(21): 2752
Received: Jul. 11, 2022
Accepted: --
Published Online: Nov. 28, 2022
The Author Email: ZHANG Zhong (zhangzhongcc@tongji.edu.cn)