Journal of Advanced Dielectrics, Volume. 15, Issue 2, 2450014(2025)

Impedance spectroscopy and electrical conductivity of 0.7Bi(1x)NdxFeO3–0.3BaTiO3 ferroelectric ceramics

Hui Tang, Xiao-Cao Peng, Jiu-Ming Ma, Zhi-Peng Yang, Xiang Niu, Jun-Xia Wen, Xin-Gui Tang, and Sheng-Guo Lu*
References(35)

[1] I. Sosnowskat, T. Peterlin-Neumaier, E. Steichele. Spiral magnetic ordering in bismuth ferrite. J. Phys. C, Solid State Phys., 15, 4835(1982).

[2] H. Bai, J. Li, Y. Hong, Z. Zhou. Enhanced ferroelectricity and magnetism of quenched (1-x)BiFeO3–xBaTiO3 ceramics. J. Adv. Ceram., 9, 511(2020).

[3] B. Xun, A. Song, J. Yu, Y. Yin, J. F. Li, B. P. Zhang. Lead-free BiFeO3-BaTiO3 ceramics with high curie temperature: Fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients. ACS Appl. Mater. Interfaces, 13, 4192(2021).

[4] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S. W. Cheong. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 324, 63(2009).

[5] S. Khasbulatov, S. Kallaev, H. Gadjiev, Z. Omarov, A. Bakmaev, I. Verbenko, A. Pavelko, L. Reznichenko. Thermophysical properties of BiFeO3/REE multiferroics in a wide temperature range. J. Adv. Dielectr., 10, 2060019(2020).

[6] D. W. Wang, M. L. Wang, F. B. Liu, Y. Cui, Q. L. Zhao, H. J. Sun, H. B. Jin, M. S. Cao. Sol–gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram. Int., 41, 8768(2015).

[7] D. Lebeugle, D. Colson, A. Forget, M. Viret. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett., 91, 022907(2007).

[8] P. Z. Chen, Y. Q. Li, X. Li, S. H. Zheng, M. F. Liu, L. Lin, Z. B. Yan, X. P. Jiang, J. M. Liu. Absence of piezoelectric enhancement around the morphotropic phase boundaries for Bi1-xNdxFeO3 ceramics. AIP Adv., 10, 065329(2020).

[9] J. F. Scott. Ferroelectrics go bananas. J. Phys., Condens. Matter, 20, 021001(2008).

[10] D. Wang, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, I. M. Reaney. Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J. Eur. Ceram. Soc., 37, 1857(2017).

[11] D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, I. M. Reaney. BiFeO3-BaTiO3: A new generation of lead-free electroceramics. J. Adv. Dielectr., 8, 1830004(2019).

[12] J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang. Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures. Prog. Mater. Sci., 84, 335(2016).

[13] L. F. Zhu, X. W. Lei, L. Zhao, M. I. Hussain, G. Z. Zhao, B. P. Zhang. Phase structure and energy storage performance for BiFeO3–BaTiO3 based lead-free ferroelectric ceramics. Ceram. Int., 45, 20266(2019).

[14] Y. Li, W. Q. Cao, J. Yuan, D. W. Wang, M. S. Cao. Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic-dielectric synergy. J. Mater. Chem. C, 3, 9276(2015).

[15] A. C. Larson, R. B. Von Dreele. General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, 86-748(2004).

[16] H. Toby. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr., 34, 210(2001).

[17] H. Tang, X. Niu, Z. P. Yang, X. C. Peng, X. B. Zhao, Y. B. Yao, T. Tao, B. liang, X. G. Tang, S. G. Lu. Giant electrocaloric effect enhancement due to the polarization flip and impact of Mn4+ doping on the dielectric, ferroelectric properties in 0.7BiFeO3-0.3BaTiO3 ceramics. Acta Phys. Sin., 71, 147701(2022).

[18] B. Li, Q. X. Liu, X. G. Tang, T. F. Zhang, Y. P. Jiang, W. H. Li, J. Luo. High temperature dielectric anomaly and impedance analysis of (Pb1−3x∕2Lax)(Zr0.95Ti0.05)O3 ceramics. J. Mater. Sci., Mater. Electron., 28, 14864(2017).

[19] U. Sukkha, W. Vittayakorn, R. Muanghlua, S. Niemcharoen, B. Boonchom, N. Vittayakorn, D. Lupascu. Phase transition behavior of the (1-x)PbZrO3−xBa(Al1∕2Nb1∕2)O3 solid solution. J. Am. Ceram. Soc., 95, 3151(2012).

[20] Z. G. Liu, P. Z. Ge, H. Tang, X. G. Tang, S. M. Zeng, Y. P. Jiang, Z. H. Tang, Q. X. Liu. High-temperature dielectric properties and impedance spectroscopy of PbHf1−xSnxO3 ceramics. IET Nanodielectr., 3, 131(2020).

[21] M. Arshad, H. Du, M. S. Javed, A. Maqsood, I. Ashraf, S. Hussain, W. Ma, H. Ran. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics. Ceram. Int., 46, 2238(2020).

[22] M. Tang, L. Yu, Y. Wang, J. Lv, J. Dong, B. Guo, F. Chen, Q. Ai, Y. Luo, Q. Li, K. Yu, F. Wu, G. Liu. Dielectric, ferroelectric, and energy storage properties of Ba(Zn1∕3Nb2∕3)O3-modfied BiFeO3–BaTiO3 Pb-Free relaxor ferroelectric ceramics. Ceram. Int., 47, 3780(2021).

[23] Z. Yang, Y. Yuan, L. Cao, E. Li, S. Zhang. Relaxor ferroelectric (Na0.5Bi0.5)0.4Sr0.6TiO3-based ceramics for energy storage application. Ceram. Int., 46, 11282(2020).

[24] D. C. Sinclair, A. R. West. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys., 66, 3850(1989).

[25] Q. Liu, J. Liu, D. Lu, W. Zheng. Colossal dielectric behavior and relaxation in Nd-doped BaTiO3 at low temperature. Ceram. Int., 44, 7251(2018).

[26] J. T. S. Irvine, D. C. Sinclair, A. R. West. Electroceramics characterization by impedance spectroscopy. Adv. Mater., 2, 132(1990).

[27] F. D. Morrison, D. C. Sinclair, A. R. West. Characterization of lanthanum-doped barium titanate ceramics using impedance spectroscopy. J. Am. Ceram. Soc., 84, 531(2001).

[28] A. R. West, T. B. Adams, F. D. Morrison, D. C. Sinclair. Novel high capacitance materials:-BaTiO3:La and CaCu3Ti4O12. J. Eur. Ceram. Soc., 24, 1439(2004).

[29] D. K. Mahato, T. P. Sinha. Electrical conductivity and dielectric relaxation in Pr2CoZrO6 double perovskite. J. Alloys Compd., 634, 246(2015).

[30] P. Z. Ge, X. G. Tang, Q. X. Liu, Y. P. Jiang, W. H. Li, B. Li. Temperature-dependent dielectric relaxation and high tunability of (Ba1−xSrx)TiO3 ceramics. J. Alloys Compd, 731, 70(2018).

[31] T. F. Zhang, X. G. Tang, Q. X. Liu, S. G. Lu, Y. P. Jiang, X. X. Huang, Q. F. Zhou. Oxygen-vacancy-related relaxation and conduction behavior in (Pb1−xBax)(Zr0.95Ti0.05)O3 ceramics. AIP Adv., 4, 107141(2014).

[32] J. Miao, X. G. Xu, Y. Jiang, L. X. Cao, B. R. Zhao. Ionized-oxygen vacancies related dielectric relaxation in heteroepitaxial K0.5Na0.5NbO3/La0.67Sr0.33MnO3 structure at elevated temperature. Appl. Phys. Lett., 95, 132905(2009).

[33] T. F. Zhang, X. G. Tang, Q. X. Liu, Y. P. Jiang, X. X. Huang, D. Johnson. Oxygen-vacancy-related high temperature dielectric relaxation in (Pb1−xBax)ZrO3 ceramics. J. Am. Ceram. Soc., 98, 551(2015).

[34] G. Singh, V. S. Tiwari, P. K. Gupta. Role of oxygen vacancies on relaxation and conduction behavior of KNbO3 ceramic. J. Appl. Phys., 107, 064103(2010).

[35] M. D. Li, X. G. Tang, S. M. Zeng, Y. P. Jiang, Q. X. Liu, T. F. Zhang, W. H. Li. Oxygen-vacancy-related dielectric relaxation behaviours and impedance spectroscopy of Bi(Mg1∕2Ti1∕2)O3 modified BaTiO3 ferroelectric ceramics. J. Materiomics, 4, 194(2018).

Tools

Get Citation

Copy Citation Text

Hui Tang, Xiao-Cao Peng, Jiu-Ming Ma, Zhi-Peng Yang, Xiang Niu, Jun-Xia Wen, Xin-Gui Tang, Sheng-Guo Lu. Impedance spectroscopy and electrical conductivity of 0.7Bi(1x)NdxFeO3–0.3BaTiO3 ferroelectric ceramics[J]. Journal of Advanced Dielectrics, 2025, 15(2): 2450014

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Mar. 18, 2024

Accepted: May. 27, 2024

Published Online: Feb. 18, 2025

The Author Email: Lu Sheng-Guo (sglu@gdut.edu.cn)

DOI:10.1142/S2010135X24500140

Topics