Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1100(2022)
Progress on Rare-Earth Ions Doped Midinfrared Chalcogenide Optical Fibers and Their Sensing Application
[1] [1] SEDDON A B, NAPIER B, LINDSAY I, et al. Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease[J]. Analyst, 2018, 143(24): 5874-5887.
[2] [2] JOE H, YUN H, JO S H, et al. A review on optical fiber sensors for environmental monitoring[J]. Int J Precis Eng Manuf-Green Technol,2018, 5(1): 173-191.
[3] [3] JACKSON S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nat Photon, 2012, 6(7): 423-431.
[6] [6] PETERSEN C R, M?LLER U, KUBAT I, et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nat Photon,2014, 8(11): 830-834.
[7] [7] CHARPENTIER F, STARECKI F, DOUALAN J L, et al. Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers[J]. Mater Lett, 2013, 101(15): 21-24.
[8] [8] SEDDON A B, TANG Z Q, FURNISS D, et al. Progress in rare-earth-doped mid-infrared fiber lasers[J]. Opt Express, 2010,18(25): 26704-26719.
[9] [9] STARECKI F, ABDELLAOUI N, BRAUD A, et al. 8 μm luminescence from a Tb3+ GaGeSbSe fiber[J]. Opt Lett, 2018, 43(6): 1211-1214.
[10] [10] SANGHERA J S, BRANDON S L, AGGARWAL I D, et al.Chalcogenide glass fiber based Mid-IR sources and applications[J].IEEE J Sel Top Quant, 2009, 15(1): 114-119.
[11] [11] MOIZAN V, NAZABAL V, TROLES J, et al. Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy[J]. Opt Mater, 2008, 31(1): 39-46.
[12] [12] SHAW L B, COLE B, THIELEN P A, et al. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber[J]. IEEE J Quantum Electron, 2001, 37(9): 1127-1137.
[14] [14] SAKR H, FURNISS D, TANG Z, et al. Superior photoluminescence(PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber[J]. Opt Express, 2014, 22(18):21236-21252.
[15] [15] LI L N, JIAO Q, WANG G X, et al. The effects of lanthanum addition on optical characteristics of Ge?Ga?S?AgI chalcogenide glasses[J].Infr Phys Technol, 2017, 85: 86-91.
[16] [16] HEO J. Emission and local structure of rare-earth ions in chalcogenide glasses[J]. J Non-Cryst Solids, 2007, 353(13-15): 1358-1363.
[17] [17] YONG B S, J HEO, HYOUN S K, et al.Modification of the local phonon modes and electron-phonon coupling strengths in Dy3+-doped sulfide glasses for efficient 1.3 μm amplification[J].Chem Phys Lett,2000, 317(6): 637-641.
[18] [18] LI M M, XU Y S, JIA X M, et al. Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses[J]. Opt Mater Express,2018, 8(4): 992-1000.
[19] [19] MA C C, GUO H T, XU Y S, et al. Effect of glass composition on the physical properties and luminescence of Pr3+ ion-doped chalcogenide glasses[J]. J Am Ceram Soc, 2019, 102(11): 6794-6801.
[22] [22] PARK B J, SEO H S, AHN J T, et al.Mid-infrared (3.5-5.5 μm)spectroscopic properties of Pr3+-doped Ge-Ga-Sb-Se glasses and optical fibers[J]. J Lumin, 2008, 128(10): 1617-1622.
[23] [23] CHARPENTIER F, STARECKI F, DOUALAN J L, et al. Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers[J]. Mater Lett, 2013, 101(5): 21-24.
[24] [24] YONG G C, KYONG H K, HEO J, et al. Emission properties of the Er3+: 4I11/2→4I13/2 transition in Er3+- and Er3+/Tm3+-doped Ge-Ga-As-S glasses[J]. J Non-Cryst Solids, 2000, 278: 137-144.
[25] [25] PELé AL, BRAUD A, DOUALAN J L, et al. Dy3+ doped GeGaSbS fluorescent fiber at 4.4 μm for optical gas sensing: Comparison of simulation and experiment[J]. Opt Mater, 2016, 61: 37-44.
[26] [26] TANG Z Q, NEATE N C, FURNISS D, et al. Crystallization behavior of Dy3+-doped selenide glasses[J]. J Non-Cryst Solids, 2011,357(11-13): 2453-2462.
[27] [27] SEDDON A B, TANG Z Q, FURNISS D, et al. Progress in rare-earth-doped mid-infrared fiber lasers[J]. Opt Express, 2010,18(25): 26704-26719.
[28] [28] SóJKA L, TANG Z, FURNISS D, et al. Broadband mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad[J]. Opt Mater, 2014, 36(6): 1076-1082.
[29] [29] YANG A P, QIU J H, ZHANG M J, et al. Mid-infrared luminescence of Dy3+ ions in modified Ga-Sb-S chalcogenide glasses and fibers[J]. J Alloys Compd, 2017, 695(25): 1237-1242.
[30] [30] YANG A P, SUN M Y, REN H, et al. Dy3+-doped Ga2S3-Sb2S3-La2S3 chalcogenide glass for mid-infrared fiber laser medium[J]. J Lumin,2021, 237: 118169.
[31] [31] STARECKI F, LOUVET G, ARI J, et al. Dy3+ doped GaGeSbSe fiber long-wave infrared emission[J]. J Lumin, 2020, 218: 116853.
[32] [32] STARECKI F, BRAUD A, ABDELLAOUI N, et al. 7 to 8 μm emission from Sm3+ doped selenide fibers[J]. Opt Express, 2018,26(20): 26462-26469.
[33] [33] SHIRYAEV V S, KARAKSINA E V, KOTEREVA T V, et al.Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics[J]. J Lumin, 2017,183: 129-134.
[34] [34] SHIRYAEV V S, KARAKSINA E V, KOTEREVA T V, et al.Core-clad Pr3+-doped Ga(In)GeAsSe glass fibers for Mid-IR radiation sources[J]. J Non-Cryst Solids, 2020, 537: 120026.
[35] [35] SHIRYAEV V S, SUKHANOV M V, VELMUZHOV A P, et al.Core-clad terbium doped chalcogenide glass fiber with laser action at 5.38 μm[J]. J Non-Cryst Solids, 2021, 567: 120939.
[36] [36] SOJKA L, TANG Z, FURNISS D, et al. Mid-infrared emission in Tb3+-doped selenide glass fiber[J]. J Opt Soc Am B, 2017, 34(3):A70-A79.
[37] [37] CHURBANOV M F, DENKER B I, GALAGAN B I, et al. First demonstration of ~ 5 μm laser action in terbium-doped selenide glass[J]. Appl Phys B, 2020, 126(7): 117.
[38] [38] STARECKI F, CHARPENTIER F, DOUALAN J L, et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers[J]. Sens Actuators B: Chem, 2015, 207:518-525.
[39] [39] BUREAU B, BOUSSARD C, CUI S, et al. Chalcogenide optical fibers for mid-infrared sensing[J]. Opt Eng, 2014, 53(2): 1-5.
[40] [40] WANG L L, MA W Q, ZHANG P Q, et al. Mid-infrared gas detection using a chalcogenide suspended-core fiber[J]. J Lightwave Technol,2019, 37(20): 5193-5198.
[41] [41] MAURUGEON S, BUREAU B, BOUSSARD P C, et al. Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing[J].Opt Mater, 2011, 33(4): 660-663.
[42] [42] DAI X B, LIU X Y, LIU L, et al. A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases[J]. Sens Actuators B: Chem, 2015, 220: 414-419.
[43] [43] CHARPENTIER F, BUREAU B, TROLES J, et al. Infrared monitoring of underground CO2 storage using chalcogenide glass fibers[J]. Opt Mater, 2009, 31(3): 496-500.
[44] [44] LUCIER A, ZOBACK M. Assessing the economic feasibility of regional deep saline aquifer CO2 injection and storage: A geomechanics-based workflow applied to the rose run sandstone in eastern ohio, USA[J]. Int J Greenhouse Gas Control, 2008, 2(2): 230-247.
[45] [45] STARECKI F, MORAIS S, CHAHAL R, et al. IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems[J]. Int J Greenhouse Gas Control, 2016, 55: 36-41.
[46] [46] STARECKI F, CHARPENTIER F, DOUALAN J, et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers[J]. Sens Actuators B: Chem, 2015, 207:518-525.
[47] [47] ARI J, STARECKI F, BOUSSARD P C, et al. Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission[J]. Opt Lett,2018, 43(12): 2893-2896.
[48] [48] PELE A L, BRAUD A, DOUALAN J L, et al. Wavelength conversion in Er3+ doped chalcogenide fibers for optical gas sensors[J]. Opt Express, 2015, 23(4): 4163-4172.
[49] [49] STARECKI F, BRAUD A, DOUALAN J L, et al. All-optical carbon dioxide remote sensing using rare earth doped chalcogenide fibers[J]. Opt Lasers Eng, 2019, 122: 328-334.
Get Citation
Copy Citation Text
LIU Quan, LI Zijian, ZHAO Xudong, XU Yinsheng, ZHANG Xianghua. Progress on Rare-Earth Ions Doped Midinfrared Chalcogenide Optical Fibers and Their Sensing Application[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1100
Category:
Received: Nov. 12, 2021
Accepted: --
Published Online: Nov. 13, 2022
The Author Email: