Laser & Optoelectronics Progress, Volume. 59, Issue 1, 0114012(2022)

Morphology Prediction of Coaxial Powder Feeding Multichannel Laser Cladding Layer Based on Response Surface

Wanxu Liang1, Yong Yang1、*, Kang Jin1, Kang Qi1, Li Xiong1, Yi Liu2, and Longjie Dai2
Author Affiliations
  • 1School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao , Shandong 266520, China
  • 2Qingdao Choho Industrial Co., Ltd., Qingdao , Shandong 266705, China
  • show less
    Figures & Tables(19)
    Laser cladding equipment
    Schematic of coaxial powder feeding multi-channel laser cladding
    Section morphology of cladding layer
    Cross-sectional morphologies of cladding layers of each sample. (a) Sample 10; (b) sample 20; (c) sample 30; (d) sample 40; (e) sample 50; (f) sample 60; (g) sample 70; (h) sample 80; (i) sample 90
    Effect Pareto diagram of average height of cladding layer
    Effect Pareto diagram of average substrate melt depth
    Three-dimensional response surfaces of average substrate melt depth under different significant interaction terms. (a) Laser power P and distance from cladding head to the substrate L; (b) overlap rate Or and distance from cladding head to the substrate L; (c) scanning speed S and overlap rate Or
    Effect Pareto diagram of average dilution rate
    Three-dimensional response surfaces of average dilution rate under different significant interaction terms. (a) Scanning speed S and overlap rate Or; (b) distance from cladding head to the substrate L and laser power P; (c) distance from cladding head to the substrate L and scanning speed S
    Effect Pareto diagram of average surface height difference
    Three-dimensional response surfaces of average surface height difference under different significant interaction terms. (a) Overlap rate Or and laser power P; (b) distance from cladding head to the substrate L and overlap rate Or
    Cladding layer morphologies after optimization.(a) Surface morphology; (b) cross-sectional morphology
    • Table 1. Chemical composition of 45 steel and 316L stainless steel powder

      View table

      Table 1. Chemical composition of 45 steel and 316L stainless steel powder

      MaterialMass fraction /%
      CSiMnSPCrNiMoCu
      45 steel0.460.270.65--0.230.3-0.24
      316L powder0.070.901.900.030.03517.5122.5-
    • Table 2. Process parameter values

      View table

      Table 2. Process parameter values

      VariableNotationValue
      Laser powerP /kW1.0,1.2,1.4
      Scanning speedS /mms-15,7,9
      Overlap rateOr /%10,20,30,40,50
      Distance from cladding head to substrateL /mm1.5,2.0
    • Table 3. Predicted average height of cladding layers

      View table

      Table 3. Predicted average height of cladding layers

      No.P /kWS /mms-1Or /%L /mmH /mmH' /mmΔ1 /%
      Average10.09
      101.05101.50.9340.8459.53
      201.25301.50.8860.9082.49
      301.45202.00.7950.7920.37
      401.07102.00.3280.41827.46
      501.27302.00.5710.48115.82
      601.47401.50.6790.78916.20
      701.09402.00.2560.2502.51
      801.29501.50.6090.5588.39
      901.49502.00.4630.4268.01
    • Table 4. Predicted average substrate melt depth

      View table

      Table 4. Predicted average substrate melt depth

      No.P /kWS /mms-1Or /%L /mmD /mmD' /mmΔ2 /%
      Average4.96
      101.05101.50.1470.1491.02
      201.25301.50.3270.3496.64
      301.45202.00.6380.5937.08
      401.07102.00.2210.19710.97
      501.27302.00.3930.3900.95
      601.47401.50.4260.4093.96
      701.09402.00.1250.1379.71
      801.29501.50.2290.2271.11
      901.49502.00.4420.4292.98
    • Table 5. Predicted average dilution rate

      View table

      Table 5. Predicted average dilution rate

      No.P /kWS /(mm⋅s-1Or /%L /mmDr /%Dr' /%Δ3 /%
      Average8.83
      101.05101.515.512.618.77
      201.25301.528.327.62.59
      301.45202.045.544.81.46
      401.07102.032.231.03.81
      501.27302.040.745.210.89
      601.47401.532.534.45.87
      701.09402.032.639.621.75
      801.29501.528.924.913.80
      901.49502.049.049.30.55
    • Table 6. Predicted average surface height difference

      View table

      Table 6. Predicted average surface height difference

      No.P /kWS /(mm⋅s-1Or /%L /mmAd /mmAd' /mmΔ4 /%
      Average8.34
      101.05101.50.3370.3224.32
      201.25301.50.2530.28211.58
      301.45202.00.2860.2734.47
      401.07102.00.2800.2903.27
      501.27302.00.1960.2002.40
      601.47401.50.2390.2629.85
      701.09402.00.1150.13719.54
      801.29501.50.2030.24018.03
      901.49502.00.1530.1551.58
    • Table 7. Optimization results and validation

      View table

      Table 7. Optimization results and validation

      No.P /kWS /(mm⋅s-1Or /%L /mmH /mmD /mmDr /%Ad /mm
      PredictI1.16301.40.7960.27023.60.272
      1.28451.40.6610.26724.60.261
      1.39451.30.7060.25923.30.266
      ExperimentalI1.16301.40.8290.24622.10.268
      1.28451.40.6980.42436.80.209
      1.39451.30.7760.31829.60.230
    Tools

    Get Citation

    Copy Citation Text

    Wanxu Liang, Yong Yang, Kang Jin, Kang Qi, Li Xiong, Yi Liu, Longjie Dai. Morphology Prediction of Coaxial Powder Feeding Multichannel Laser Cladding Layer Based on Response Surface[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0114012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Apr. 7, 2021

    Accepted: May. 7, 2021

    Published Online: Dec. 23, 2021

    The Author Email: Yang Yong (yyong901@163.com)

    DOI:10.3788/LOP202259.0114012

    Topics