Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316002(2023)

Flexible Organic Polymer Photonic Devices for Biomedical Applications

Jingjing Guo*, Xiaoyan Guo, Jialin Tuo, Zhuozhou Li, and Lijun Xu
Author Affiliations
  • School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • show less
    References(140)

    [1] Yan R X, Gargas D, Yang P D. Nanowire photonics[J]. Nature Photonics, 3, 569-576(2009).

    [2] Lu L, Joannopoulos J D, Soljačić M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).

    [3] Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 27, 314-335(2009).

    [4] Lee K K, Lim D R, Kimerling L C et al. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction[J]. Optics Letters, 26, 1888-1890(2001).

    [5] Chan J W, Huser T R, Risbud S H et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses[J]. Applied Physics Letters, 82, 2371-2373(2003).

    [6] Presby H M, Kaminow I P. Binary silica optical fibers: refractive index and profile dispersion measurements[J]. Applied Optics, 15, 3029-3036(1976).

    [7] Anuszkiewicz A, Kasztelanic R, Filipkowski A et al. Fused silica optical fibers with graded index nanostructured core[J]. Scientific Reports, 8, 12329(2018).

    [8] Othonos A. Fiber Bragg gratings[J]. Review of Scientific Instruments, 68, 4309-4341(1997).

    [9] Livanos A C, Katzir A, Yariv A. Fabrication of grating structures with variable period[J]. Optics Communications, 20, 179-182(1977).

    [10] Efimov O M, Glebov L B, Glebova L N et al. High-efficiency Bragg gratings in photothermorefractive glass[J]. Applied Optics, 38, 619-627(1999).

    [11] Jamois C, Wehrspohn R B, Schilling J et al. Silicon-based photonic crystal slabs: two concepts[J]. IEEE Journal of Quantum Electronics, 38, 805-810(2002).

    [12] Sinitskii A S, Knot’ko A V, Tretyakov Y D. Silica photonic crystals: synthesis and optical properties[J]. Solid State Ionics, 172, 477-479(2004).

    [13] Freeman D, Grillet C, Lee M W et al. Chalcogenide glass photonic crystals[J]. Photonics and Nanostructures - Fundamentals and Applications, 6, 3-11(2008).

    [14] Holland S. Fabrication of detectors and transistors on high-resistivity silicon[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 275, 537-541(1989).

    [15] Emsley M K, Dosunmu O, Unlu M S. High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates[J]. IEEE Photonics Technology Letters, 14, 519-521(2002).

    [16] Sengupta K, Nagatsuma T, Mittleman D M. Terahertz integrated electronic and hybrid electronic-photonic systems[J]. Nature Electronics, 1, 622-635(2018).

    [17] Jia S, Lo M C, Zhang L et al. Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications[J]. Nature Communications, 13, 1388(2022).

    [18] Wang C X, Zhang D M, Yue J et al. On-chip optical sources of 3D photonic integration based on active fluorescent polymer waveguide microdisks for light display application[J]. PhotoniX, 4, 1-15(2023).

    [19] Khan M H, Shen H, Xuan Y et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper[J]. Nature Photonics, 4, 117-122(2010).

    [20] Bogaerts W, Pérez D, Capmany J et al. Programmable photonic circuits[J]. Nature, 586, 207-216(2020).

    [21] Adamopoulos C, Buchbinder S, Zarkos P et al. Fully integrated electronic-photonic biosensor for label-free real-time molecular sensing in advanced zero-change CMOS-SOI process[J]. IEEE Solid-State Circuits Letters, 4, 198-201(2021).

    [22] Geiger S, Michon J, Liu S Y et al. Flexible and stretchable photonics: the next stretch of opportunities[J]. ACS Photonics, 7, 2618-2635(2020).

    [23] Guo J J, Yang C X, Dai Q H et al. Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications[J]. Sensors, 19, 3771(2019).

    [24] Zhao H C, O’Brien K, Li S et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J]. Science Robotics, 1, eaai7529(2016).

    [25] Shi Z, Li L Z, Zhao Y et al. Implantable optoelectronic devices and systems for biomedical application[J]. Chinese Journal of Lasers, 45, 0207001(2018).

    [26] Shabahang S, Kim S, Yun S H. Light-guiding biomaterials for biomedical applications[J]. Advanced Functional Materials, 28, 1706635(2018).

    [27] Jiang N, Ahmed R, Rifat A A et al. Functionalized flexible soft polymer optical fibers for laser photomedicine[J]. Advanced Optical Materials, 6, 1701118(2018).

    [28] Humar M, Kwok S J J, Choi M et al. Toward biomaterial-based implantable photonic devices[J]. Nanophotonics, 6, 414-434(2017).

    [29] Guo J J, Shang C, Gao S et al. Flexible plasmonic optical tactile sensor for health monitoring and artificial haptic perception[J]. Advanced Materials Technologies, 8, 2201506(2023).

    [30] Nizamoglu S, Gather M C, Humar M et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine[J]. Nature Communications, 7, 10374(2016).

    [31] Choi M, Choi J W, Kim S et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo[J]. Nature Photonics, 7, 987-994(2013).

    [32] Guo J J, Zhou B Q, Du Z et al. Soft and plasmonic hydrogel optical probe for glucose monitoring[J]. Nanophotonics, 10, 3549-3558(2021).

    [33] Guo J J, Liu X Y, Jiang N et al. Highly stretchable, strain sensing hydrogel optical fibers[J]. Advanced Materials, 28, 10244-10249(2016).

    [34] Guo J J, Niu M X, Yang C X. Highly flexible and stretchable optical strain sensing for human motion detection[J]. Optica, 4, 1285-1288(2017).

    [35] Shan D Y, Zhang C J, Kalaba S et al. Flexible biodegradable citrate-based polymeric step-index optical fiber[J]. Biomaterials, 143, 142-148(2017).

    [36] Tanio N, Koike Y. What is the most transparent polymer?[J]. Polymer Journal, 32, 43-50(2000).

    [37] Pitois C, Hult A, Wiesmann D. Absorption and scattering in low-loss polymer optical waveguides[J]. Journal of the Optical Society of America B, 18, 908-912(2001).

    [38] Wu C J, Liu X J, Ying Y B. Soft and stretchable optical waveguide: light delivery and manipulation at complex biointerfaces creating unique windows for on-body sensing[J]. ACS Sensors, 6, 1446-1460(2021).

    [39] Onuki Y, Bhardwaj U, Papadimitrakopoulos F et al. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response[J]. Journal of Diabetes Science and Technology, 2, 1003-1015(2008).

    [40] Morais J M, Papadimitrakopoulos F, Burgess D J. Biomaterials/tissue interactions: possible solutions to overcome foreign body response[J]. The AAPS Journal, 12, 188-196(2010).

    [41] Choi M, Humar M, Kim S et al. Step-index optical fiber made of biocompatible hydrogels[J]. Advanced Materials, 27, 4081-4086(2015).

    [42] Agache P G, Monneur C, Leveque J L et al. Mechanical properties and Young’s modulus of human skin in vivo[J]. Archives of Dermatological Research, 269, 221-232(1980).

    [43] Ahmed E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 6, 105-121(2015).

    [44] Yetisen A K, Jiang N, Fallahi A et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid[J]. Advanced Materials, 29, 1606380(2017).

    [45] Tamayol A, Akbari M, Zilberman Y et al. Flexible pH-sensing hydrogel fibers for epidermal applications[J]. Advanced Healthcare Materials, 5, 711-719(2016).

    [46] Guo J J, Zhou M J, Yang C X. Fluorescent hydrogel waveguide for on-site detection of heavy metal ions[J]. Scientific Reports, 7, 7902(2017).

    [47] Guimarães C F, Ahmed R, Marques A P et al. Engineering hydrogel-based biomedical photonics: design, fabrication, and applications[J]. Advanced Materials, 33, 2006582(2021).

    [48] Sun J Y, Zhao X H, Illeperuma W R K et al. Highly stretchable and tough hydrogels[J]. Nature, 489, 133-136(2012).

    [49] Chen G Y, Wang G, Tan X R et al. Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications[J]. National Science Review, 8, nwaa209(2021).

    [50] AlQattan B, Yetisen A K, Butt H. Direct laser writing of nanophotonic structures on contact lenses[J]. ACS Nano, 12, 5130-5140(2018).

    [51] Ye G, Wang X G. Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups[J]. Biosensors and Bioelectronics, 26, 772-777(2010).

    [52] Mu Z D, Zhao X W, Huang Y et al. Photonic crystal hydrogel enhanced plasmonic staining for multiplexed protein analysis[J]. Small, 11, 6036-6043(2015).

    [53] Min K, Kim S, Kim S. Deformable and conformal silk hydrogel inverse opal[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 6185-6190(2017).

    [54] Kim S, Mitropoulos A N, Spitzberg J D et al. Silk inverse opals[J]. Nature Photonics, 6, 818-823(2012).

    [55] Chen C, Dong Z Q, Shen J H et al. 2D photonic crystal hydrogel sensor for tear glucose monitoring[J]. ACS Omega, 3, 3211-3217(2018).

    [56] Cai Z Y, Sasmal A, Liu X Y et al. Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection[J]. ACS Sensors, 2, 1474-1481(2017).

    [57] Liu M, Yu L P. A novel platform for sensing an amino acid by integrating hydrogel photonic crystals with ternary complexes[J]. Analyst, 138, 3376-3379(2013).

    [58] Umar M, Min K, Kim S. Advances in hydrogel photonics and their applications[J]. APL Photonics, 4, 120901(2019).

    [59] Kang J H, Moon J H, Lee S K et al. Thermoresponsive hydrogel photonic crystals by three-dimensional holographic lithography[J]. Advanced Materials, 20, 3061-3065(2008).

    [60] Campbell M, Sharp D N, Harrison M T et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 404, 53-56(2000).

    [61] Yetisen A K, Butt H, da Cruz Vasconcellos F et al. Light-directed writing of chemically tunable narrow-band holographic sensors[J]. Advanced Optical Materials, 2, 250-254(2014).

    [62] Jiang N, Butt H, Montelongo Y et al. Laser interference lithography for the nanofabrication of stimuli-responsive Bragg stacks[J]. Advanced Functional Materials, 28, 1702715(2018).

    [63] Martincek I, Pudis D, Gaso P. Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper[J]. IEEE Photonics Technology Letters, 25, 2066-2069(2013).

    [64] Cai D K, Neyer A, Kuckuk R et al. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication[J]. Optical Materials, 30, 1157-1161(2008).

    [65] Missinne J, Kalathimekkad S, van Hoe B et al. Stretchable optical waveguides[J]. Optics Express, 22, 4168-4179(2014).

    [66] Odeh M, Voort B, Anjum A et al. Gradient-index optofluidic waveguide in polydimethylsiloxane[J]. Applied Optics, 56, 1202-1206(2017).

    [67] Guo J J, Zhou B Q, Yang C X et al. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring[J]. Advanced Functional Materials, 29, 1902898(2019).

    [68] Guo J J, Zhou B Q, Zong R et al. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare[J]. ACS Applied Materials & Interfaces, 11, 33589-33598(2019).

    [69] Leber A, Cholst B, Sandt J et al. Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations[J]. Advanced Functional Materials, 29, 1802629(2019).

    [70] Krehel M, Schmid M, Rossi R M et al. An optical fibre-based sensor for respiratory monitoring[J]. Sensors, 14, 13088-13101(2014).

    [71] Llera M, Flahaut F, Bergerat S et al. Few-mode elastomeric optical fibers[J]. Optical Materials Express, 11, 2288-2299(2021).

    [72] Shabahang S, Clouser F, Shabahang F et al. Single-mode, 700%-stretchable, elastic optical fibers made of thermoplastic elastomers[J]. Advanced Optical Materials, 9, 2100270(2021).

    [73] Arsenault A C, Clark T J, von Freymann G et al. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals[J]. Nature Materials, 5, 179-184(2006).

    [74] Li J, Wu Y, Fu J et al. Reversibly strain-tunable elastomeric photonic crystals[J]. Chemical Physics Letters, 390, 285-289(2004).

    [75] Chen L S, Qiao W, Ye Y et al. Critical technologies of micro-nano-manufacturing and its applications for flexible optoelectronic devices[J]. Acta Optica Sinica, 41, 0823018(2021).

    [76] Wang F, Jia S H, Wang Y L et al. Near-infrared light-controlled tunable grating based on graphene/elastomer composites[J]. Optical Materials, 76, 117-124(2018).

    [77] Peng W, Liao Q X, Song H. A nanograting-based flexible and stretchable waveguide for tactile sensing[J]. Nanoscale Research Letters, 16, 23(2021).

    [78] Hosokawa K, Hanada K, Maeda R. A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices[J]. Journal of Micromechanics and Microengineering, 12, 1-6(2002).

    [79] Huang S, Fu X B. Naturally derived materials-based cell and drug delivery systems in skin regeneration[J]. Journal of Controlled Release, 142, 149-159(2010).

    [80] Gross R A, Kalra B. Biodegradable polymers for the environment[J]. Science, 297, 803-807(2002).

    [81] Prajzler V, Min K, Kim S et al. The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum[J]. Materials, 11, 112(2018).

    [82] Zhang M, Liu Z H, Zhang Y et al. Spider silk as a flexible light waveguide for temperature sensing[J]. Journal of Lightwave Technology, 41, 1884-1889(2023).

    [83] Huby N, Vié V, Renault A et al. Native spider silk as a biological optical fiber[J]. Applied Physics Letters, 102, 123702(2013).

    [84] Qiao X, Qian Z G, Li J J et al. Synthetic engineering of spider silk fiber as implantable optical waveguides for low-loss light guiding[J]. ACS Applied Materials & Interfaces, 9, 14665-14676(2017).

    [85] Fujiwara E, Cabral T D, Sato M et al. Agarose-based structured optical fibre[J]. Scientific Reports, 10, 7035(2020).

    [86] Amato F, Soares M C P, Cabral T D et al. Agarose-based fluorescent waveguide with embedded silica nanoparticle–carbon nanodot hybrids for pH sensing[J]. ACS Applied Nano Materials, 4, 9738-9751(2021).

    [87] Dupuis A, Guo N, Gao Y et al. Prospective for biodegradable microstructured optical fibers[J]. Optics Letters, 32, 109-111(2006).

    [88] Orelma H, Hokkanen A, Leppänen I et al. Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications[J]. Cellulose, 27, 1543-1553(2020).

    [89] Kujala S, Mannila A, Karvonen L et al. Natural silk as a photonics component: a study on its light guiding and nonlinear optical properties[J]. Scientific Reports, 6, 22358(2016).

    [90] Parker S T, Domachuk P, Amsden J et al. Biocompatible silk printed optical waveguides[J]. Advanced Materials, 21, 2411-2415(2009).

    [91] Applegate M B, Perotto G, Kaplan D L et al. Biocompatible silk step-index optical waveguides[J]. Biomedical Optics Express, 6, 4221-4227(2015).

    [92] Tseng P, Zhao S W, Golding A et al. Evaluation of silk inverse opals for “smart” tissue culture[J]. ACS Omega, 2, 470-477(2017).

    [93] Tao H, Kainerstorfer J M, Siebert S M et al. Implantable, multifunctional, bioresorbable optics[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 19584-19589(2012).

    [94] Amsden J J, Perry H, Boriskina S V et al. Spectral analysis of induced color change on periodically nanopatterned silk films[J]. Optics Express, 17, 21271-21279(2009).

    [95] Omenetto F G, Kaplan D L. A new route for silk[J]. Nature Photonics, 2, 641-643(2008).

    [96] Jain A, Yang A H J, Erickson D. Gel-based optical waveguides with live cell encapsulation and integrated microfluidics[J]. Optics Letters, 37, 1472-1474(2012).

    [97] Zarrintaj P, Manouchehri S, Ahmadi Z et al. Agarose-based biomaterials for tissue engineering[J]. Carbohydrate Polymers, 187, 66-84(2018).

    [98] Jin M, Shi J L, Zhu W Z et al. Polysaccharide-based biomaterials in tissue engineering: a review[J]. Tissue Engineering. Part B, Reviews, 27, 604-626(2021).

    [99] Taib N A A B, Rahman M R, Huda D et al. A review on poly lactic acid (PLA) as a biodegradable polymer[J]. Polymer Bulletin, 80, 1179-1213(2023).

    [100] Fu R X, Luo W H, Nazempour R et al. Implantable and biodegradable poly(l-lactic acid) fibers for optical neural interfaces[J]. Advanced Optical Materials, 6, 1700941(2018).

    [101] Kim M, An J, Kim K S et al. Optical lens-microneedle array for percutaneous light delivery[J]. Biomedical Optics Express, 7, 4220-4227(2016).

    [102] Choi W J, Park K S, Lee B H. Light-guided localization within tissue using biocompatible surgical suture fiber as an optical waveguide[J]. Journal of Biomedical Optics, 19, 090503(2014).

    [103] Mao L J, Yin Y R, Zhang L X et al. Regulation of inflammatory response and osteogenesis to citrate-based biomaterials through incorporation of alkaline fragments[J]. Advanced Healthcare Materials, 11, 2101590(2022).

    [104] Tran R T, Yang J A, Ameer G A. Citrate-based biomaterials and their applications in regenerative engineering[J]. Annual Review of Materials Research, 45, 277-310(2015).

    [105] Guo J J, Huang H X, Zhou M J et al. Quantum dots-doped tapered hydrogel waveguide for ratiometric sensing of metal ions[J]. Analytical Chemistry, 90, 12292-12298(2018).

    [106] Zhou M J, Guo J J, Yang C X. Ratiometric fluorescence sensor for Fe3+ ions detection based on quantum dot-doped hydrogel optical fiber[J]. Sensors and Actuators B: Chemical, 264, 52-58(2018).

    [107] Cochrane C, Mordon S R, Lesage J C et al. New design of textile light diffusers for photodynamic therapy[J]. Materials Science and Engineering: C, 33, 1170-1175(2013).

    [108] Wang L L, Zhong C, Ke D N et al. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations[J]. Advanced Optical Materials, 6, 1800427(2018).

    [109] Canales A, Jia X T, Froriep U P et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 33, 277-284(2015).

    [110] Cao Y, Pan S W, Yan M Y et al. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals[J]. BMC Biology, 19, 252(2021).

    [111] Rodbard D. Continuous glucose monitoring: a review of successes, challenges, and opportunities[J]. Diabetes Technology & Therapeutics, 18, S3-S13(2016).

    [112] Hsuan-Pei E, Kong J A N, Chen W C et al. Biocompatible spider silk-based metal-dielectric fiber optic sugar sensor[J]. Biomedical Optics Express, 13, 4483-4493(2022).

    [113] Heo Y J, Shibata H, Okitsu T et al. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 13399-13403(2011).

    [114] Zhang C J, Cano G G, Braun P V. Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents[J]. Advanced Materials, 26, 5678-5683(2014).

    [115] Domachuk P, Perry H, Amsden J J et al. Bioactive self-sensing optical systems[J]. Applied Physics Letters, 95, 253702(2009).

    [116] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 8(2017).

    [117] Shao J D, Xie H H, Huang H et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy[J]. Nature Communications, 7, 12967(2016).

    [118] Liu K, Xing R R, Zou Q L et al. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy[J]. Angewandte Chemie International Edition, 55, 3036-3039(2016).

    [119] Hamblin M R, Huang Y Y, Heiskanen V. Non-mammalian hosts and photobiomodulation: do all life-forms respond to light?[J]. Photochemistry and Photobiology, 95, 126-139(2019).

    [120] Kong L J, Jin C, Jin G F. Advances on in vivo high-spatial-resolution neural manipulation based on optogenetics[J]. Chinese Journal of Lasers, 48, 1507003(2021).

    [121] Yanovsky R L, Bartenstein D W, Rogers G S et al. Photodynamic therapy for solid tumors: a review of the literature[J]. Photodermatology, Photoimmunology & Photomedicine, 35, 295-303(2019).

    [122] Brown S B, Brown E A, Walker I. The present and future role of photodynamic therapy in cancer treatment[J]. The Lancet Oncology, 5, 497-508(2004).

    [123] Teh D B L, Bansal A, Chai C et al. A flexi-PEGDA upconversion implant for wireless brain photodynamic therapy[J]. Advanced Materials, 32, 2001459(2020).

    [124] Yetisen A K, Martinez-Hurtado J L, Ünal B et al. Wearables in medicine[J]. Advanced Materials, 30, 1706910(2018).

    [125] Shi Q F, Dong B W, He T et al. Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things[J]. InfoMat, 2, 1131-1162(2020).

    [126] Lee G H, Moon H, Kim H et al. Multifunctional materials for implantable and wearable photonic healthcare devices[J]. Nature Reviews Materials, 5, 149-165(2020).

    [127] To C, Hellebrekers T L, Park Y L. Highly stretchable optical sensors for pressure, strain, and curvature measurement[C], 5898-5903(2015).

    [128] Harnett C K, Zhao H C, Shepherd R F. Stretchable optical fibers: threads for strain-sensitive textiles[J]. Advanced Materials Technologies, 2, 1700087(2017).

    [129] Zha B J, Wang Z, Li L Q et al. Wearable cardiorespiratory monitoring with stretchable elastomer optical fiber[J]. Biomedical Optics Express, 14, 2260-2275(2023).

    [130] Yang J, Wei D P, Tang L L et al. Wearable temperature sensor based on graphene nanowalls[J]. RSC Advances, 5, 25609-25615(2015).

    [131] Li F, Xue H, Lin X Z et al. Wearable temperature sensor with high resolution for skin temperature monitoring[J]. ACS Applied Materials & Interfaces, 14, 43844-43852(2022).

    [132] Trung T Q, Ramasundaram S, Hwang B U et al. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics[J]. Advanced Materials, 28, 502-509(2016).

    [133] Song E H, Chen M H, Chen Z T et al. Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor[J]. Nature Communications, 13, 2166(2022).

    [134] Liu H Y, Wang Y, Shi Z K et al. Fast self-assembly of photonic crystal hydrogel for wearable strain and temperature sensor[J]. Small Methods, 6, 2270041(2022).

    [135] Choe A, Yeom J, Shanker R et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film[J]. NPG Asia Materials, 10, 912-922(2018).

    [136] Li Q, Liu S T, Wang J L et al. A biocompatible, self-adhesive, and stretchable photonic crystal sensor for underwater motion detection[J]. Journal of Materials Chemistry C, 10, 9025-9034(2022).

    [137] Heng W Z, Solomon S, Gao W. Flexible electronics and devices as human-machine interfaces for medical robotics[J]. Advanced Materials, 34, 2107902(2022).

    [138] Yun S, Park S, Park B et al. Polymer-waveguide-based flexible tactile sensor array for dynamic response[J]. Advanced Materials, 26, 4474-4480(2014).

    [139] Kim T, Lee S D, Hong T et al. Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces[J]. Science Robotics, 5, eabc6878(2020).

    [140] Bai H D, Li S, Barreiros J et al. Stretchable distributed fiber-optic sensors[J]. Science, 370, 848-852(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jingjing Guo, Xiaoyan Guo, Jialin Tuo, Zhuozhou Li, Lijun Xu. Flexible Organic Polymer Photonic Devices for Biomedical Applications[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: May. 29, 2023

    Accepted: Jun. 19, 2023

    Published Online: Jul. 25, 2023

    The Author Email: Guo Jingjing (guojj13@buaa.edu.cn)

    DOI:10.3788/LOP231395

    Topics