Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 121(2022)

Research Progress of Organic-Inorganic Composite Solid Electrolyte for Lithium Ion Batteries

JIA Wanqing*... SUN Ge, YAO Shiyu, CHEN Nan and DU Fei |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(102)

    [1] [1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature,

    [2] [2] DUNN B, KAMATH H, TARASCON J-M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058):928–935.

    [3] [3] LIU T, YUAN Y, TAO X, et al. Bipolar electrodes for next-generation rechargeable batteries[J]. Adv Sci, 2020, 7(17):2001207.

    [4] [4] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359–367.

    [5] [5] CHENG F, LIANG J, TAO Z, et al. Functional materials for rechargeable batteries[J]. Adv Mater, 2011, 23(15): 1695–715.

    [6] [6] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Adv Sci, 2017, 4(3):1600445.

    [7] [7] WANG H, SHENG L, YASIN G, et al. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Mater, 2020, 33:188–215.

    [8] [8] LI S, ZHANG S Q, SHEN L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J].Adv Sci, 2020, 7(5): 1903088.

    [9] [9] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium Ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem Int. Ed,2007, 46(41): 7778–7781.

    [10] [10] KOTOBUKI M, KOISHI M. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources[J]. Ceram Int,2013, 39(4): 4645–4649.

    [11] [11] ZHANG Q, SCHMIDT N, LAN J, et al. A facile method for the synthesis of the Li0.3La0.57TiO3 solid state electrolyte[J]. Chem Commun, 2014, 50(42): 5593–5596.

    [12] [12] ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy Environ Sci, 2018, 11(8):1945–1976.

    [13] [13] ZHANG Q, CAO D, MA Y, et al. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Adv Mater, 2019, 31(44): 1901131.

    [14] [14] ZHU Y, HE X, MO Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl Mater Interf, 2015,7(42): 23685–23693.

    [15] [15] MURAMATSU H, HAYASHI A, OHTOMO T, et al. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere[J].Solid State Ionics, 2011, 182(1): 116–119.

    [16] [16] WENZEL S, SEDLMAIER S J, DIETRICH C, et al. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes[J]. Solid State Ionics, 2018, 318: 102–112.

    [17] [17] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589.

    [18] [18] WANG Z, HUANG B, HUANG H, et al. Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy[J]. Electrochim Acta, 1996, 41(9): 1443–1446.

    [19] [19] CAPIGLIA C, SAITO Y, KATAOKA H, et al. Structure and transport properties of polymer gel electrolytes based on PVdF-HFP and LiN(C2F5SO2)2[J]. Solid State Ionics, 2000, 131(3): 291–299.

    [20] [20] SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363–386.

    [21] [21] ZHAO Y, WANG L, ZHOU Y, et al. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries[J]. Adv Sci, 2021, 8(7): 2003675.

    [22] [22] FAN L Z, HE H, NAN C W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries[J]. Nat Revi Mater,2021, 6:1003–1019

    [23] [23] LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries[J]. Nat Revi Mater, 2019, 4(5):312–330.

    [24] [24] WESTON J E, STEELE B C H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes[J]. Solid State Ionics,1982, 7(1): 75–79.

    [25] [25] ZHOU Q, MA J, DONG S, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Adv Mater, 2019, 31(50): 1902029.

    [28] [28] YAP Y L, YOU A H, TEO L L, et al. Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte[J]. Int J Electrochem Sci, 2013, 8(2): 2154–2163.

    [29] [29] CROCE F, SETTIMI L, SCROSATI B. Superacid ZrO2-added,composite polymer electrolytes with improved transport properties[J].Electrochemi Commun, 2006, 8(2): 364–368.

    [30] [30] LIU W, LIN D, SUN J, et al. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires[J]. ACS Nano, 2016, 10(12): 11407–11413.

    [31] [31] NAN C W, FAN L, LIN Y, et al. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles[J]. Phys Rev Lett, 2003, 91(26): 266104.

    [32] [32] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692):456–458.

    [33] [33] ITOH T, ICHIKAWA Y, UNO T, et al. Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer,BaTiO3 and LiN(CF3SO2)2[J]. Solid State Ionics, 2003, 156(3):393–399.

    [34] [34] SHENG O, JIN C, LUO J, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance[J]. Nano Lett, 2018, 18(5): 3104–3112.

    [35] [35] YUAN C, LI J, HAN P, et al. Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework[J]. J Power Sources, 2013, 240: 653–658.

    [36] [36] CHEN H, ADEKOYA D, HENCZ L, et al. Stable seamless interfaces and rapid ionic conductivity of Ca–CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery[J]. Adv Energy Mater, 2020, 10(21): 2000049

    [37] [37] YANG T, ZHENG J, CHENG Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology[J]. ACS Appl Mater Interfaces, 2017, 9(26):21773–21780.

    [38] [38] ZHANG X, LIU T, ZHANG S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. J Am Chem Soc, 2017, 139(39):13779–13785.

    [39] [39] ZHANG W, NIE J, LI F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45:413–419.

    [40] [40] WANG X, ZHAI H, QIE B, et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J]. Nano Energy, 2019, 60:205–212.

    [41] [41] LIU X, PENG S, GAO S, et al. Electric-field-directed parallel alignment architecting 3D lithium-ion pathways within solid composite electrolyte[J]. ACS Appl Mater Interfaces, 2018, 10(18):15691–15696.

    [42] [42] ZHANG Y, CHEN R, WANG S, et al. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries[J]. Energy Storage Mater, 2020, 25:145–153.

    [43] [43] ZHAO Y, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. J Power Sources, 2016, 301:47–53.

    [44] [44] JU J, WANG Y, CHEN B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries[J]. ACS Appl Mater Interfaces, 2018, 10(16): 13588–13597.

    [45] [45] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010, 22(3): 587–603.

    [46] [46] APPETECCHI G B, CROCE F, HASSOUN J, et al. Hot-pressed, dry, composite, PEO-based electrolyte membranes: I. Ionic conductivity characterization[J]. J Power Sources, 2003, 114(1): 105–112.

    [47] [47] CHEN H-W, LIN T-P, CHANG F-C. Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay[J]. Polymer, 2002, 43(19): 5281–5288.

    [48] [48] CHO T H, TANAKA M, ONISHI H, et al. Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery[J]. J Power Sources, 2008, 181(1):155–160.

    [49] [49] CHEN R, QU W, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons[J]. Mater Horizons, 2016, 3(6): 487–516.

    [50] [50] YOUNG W S, KUAN W F, EPPS I, THOMAS H. Block copolymer electrolytes for rechargeable lithium batteries[J]. J Polymer Sci Part B:Polym Phys, 2014, 52(1): 1–16.

    [51] [51] GADJOUROVA Z, ANDREEV Y G, TUNSTALL D P, et al. Ionic conductivity in crystalline polymer electrolytes[J]. Nature, 2001,412(6846): 520–523.

    [53] [53] XI G, XIAO M, WANG S, et al. Polymer‐based solid electrolytes:material selection, design, and application[J]. Adv Funct Mater, 2020,31(9): 2007598

    [54] [54] ZHENG J, TANG M, HU Y Y. Lithium Ion Pathway within Li7La3 Zr2O12-polyethylene oxide composite electrolytes[J]. Angew Chem Int Ed Engl, 2016, 55(40): 12538–12542.

    [55] [55] ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J].ACS Appl Mater Interfaces, 2018, 10(4): 4113–4120.

    [56] [56] ZHU P, YAN C, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries[J]. J Mater Chem A,2018, 6(10): 4279–4285.

    [57] [57] ZHANG J, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy,2016, 28: 447–454.

    [58] [58] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide)[J]. Nano Lett, 2016, 16(1):459–465.

    [59] [59] WAN Z, LEI D, YANG W, et al. Low Resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Adv Funct Mater, 2019, 29(1): 1970006

    [60] [60] XU H, CHIEN P H, SHI J, et al. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide)[J]. Proc Natl Acad Sci U S A, 2019, 116(38): 18815–18821.

    [61] [61] HU C, SHEN Y, SHEN M, et al. Superionic conductors via bulk interfacial conduction[J]. J Am Chem Soc, 2020, 142(42):18035–18041.

    [62] [62] WU N, CHIEN P-H, QIAN Y, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte[J].Angew Chem Int Ed, 2020, 59(10): 4131–4137.

    [63] [63] WU N, CHIEN P H, LI Y, et al. Fast Li(+) conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte[J]. J Am Chem Soc, 2020, 142(5): 2497–2505.

    [64] [64] BROGIOLI D, LANGER F, KUN R, et al. Space-charge effects at the Li7La3Zr2O12/poly(ethylene oxide) interface[J]. ACS Appl Mater Interf , 2019, 11(12): 11999–12007.

    [65] [65] JIANG S, WAGNER J B. A theoretical model for composite electrolytes—I. Space charge layer as a cause for charge-carrier enhancement[J]. J Phys Chem Solids, 1995, 56(8): 1101–1111.

    [66] [66] LI Z, HUANG H-M, ZHU J-K, et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites[J]. ACS Appl Mater Interfaces, 2019, 11(1): 784–791.

    [67] [67] WALLS H J, RILEY M W, SINGHAL R R, et al. Nanocomposite electrolytes with fumed silica and hectorite clay networks: passive versus active fillers[J]. Adv Funct Mater, 2003, 13(9): 710–717.

    [68] [68] CROCE F, CURINI R, MARTINELLI A, et al. Physical and chemical properties of nanocomposite polymer electrolytes[J]. J Phys Chem B, 1999, 103(48): 10632–10638.

    [69] [69] WANG Y J, PAN Y, KIM D. Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes[J]. J Power Sources, 2006, 159(1): 690–701.

    [70] [70] CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to“polymer-in-ceramic”[J]. Nano Energy, 2018, 46: 176–184.

    [71] [71] PAREEK T, DWIVEDI S, AHMAD S A, et al. Effect of NASICON-type LiSnZr(PO4)3 ceramic filler on the ionic conductivity and electrochemical behavior of PVDF based composite electrolyte[J]. J Alloys Compounds, 2020, 824:153991

    [72] [72] LI Z, SHA W X, GUO X. Three-dimensional garnet frameworkreinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability[J]. ACS Appl Mater Interfaces,2019, 11(30): 26920–26927.

    [73] [73] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Lett,2015, 15(4): 2740–2745.

    [74] [74] TANG W, TANG S, GUAN X, et al. High‐performance solid polymer electrolytes filled with vertically aligned 2D materials[J].Adv Funct Mater, 2019, 29(16): 1900648

    [75] [75] LIN D, YUEN P Y, LIU Y, et al. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus[J]. Adv Mater, 2018, 30(32): e1802661.

    [76] [76] LIU W, LEE S W, LIN D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nat Energy, 2017, 2(5): 17035

    [77] [77] CARDOSO J, MAYRéN A, ROMERO-IBARRA I C, et al.Nanocomposite polymer electrolytes based on poly(poly(ethylene glycol)methacrylate), MMT or ZSM-5 formulated with LiTFSI and PYR11TFSI for Li-ion batteries[J]. RSC Adv, 2016, 6(9): 7249–7259.

    [78] [78] YU X, MANTHIRAM A. A review of composite polymer-ceramic electrolytes for lithium batteries[J]. Energy Storage Mater, 2021, 34:282–300.

    [79] [79] NIE K, HONG Y, QIU J, et al. Interfaces between cathode and electrolyte in solid state lithium batteries: challenges and perspectives[J]. Front Chem, 2018, 6(616): 616–635.

    [80] [80] GOODENOUGH J B. Electrochemical energy storage in a sustainable modern society[J]. Energy Environ Sci, 2014, 7(1): 14–18.

    [81] [81] ZHOU Q, MA J, DONG S, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Adv Mater, 2019, 31(50): e1902029.

    [82] [82] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Lett,2015, 15(4): 2740–2745.

    [83] [83] YAO P, ZHU B, ZHAI H, et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density[J]. Nano Lett, 2018, 18(10): 6113–6120.

    [84] [84] ZHANG X, LIU T, ZHANG S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. J Amen Chem Soc, 2017, 139(39):13779–13785.

    [85] [85] HU J, HE P, ZHANG B, et al. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries[J]. Energy Storage Mater, 2020, 26: 283–289.

    [86] [86] DUAN H, FAN M, CHEN W P, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J]. Adv Mater, 2019, 31(12):e1807789.

    [87] [87] ZHU X, WANG K, XU Y, et al. Strategies to boost ionic conductivity

    [88] [88] CHEN H, LIU Q Y, JING M X, et al. Improved interface stability and room-temperature performance of solid-state lithium batteries by integrating cathode/electrolyte and graphite coating[J]. ACS Appl Mater Interfaces, 2020, 12(13): 15120–15127.

    [89] [89] CHENG Y, SHU J, XU L, et al. Flexible nanowire cathode membrane with gradient interfaces and rapid electron/ion transport channels for solid‐state lithium batteries[J]. Adv Energy Mater, 2021, 11(12):2100026

    [90] [90] LIANG J Y, ZENG X X, ZHANG X D, et al. Mitigating interfacial potential drop of cathode–solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries[J]. J Am Chem Soc,2018, 140(22): 6767–6770.

    [91] [91] LIANG J Y, ZENG X X, ZHANG X D, et al. Engineering janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage li-metal batteries[J]. J Am Chem Soc, 2019,141(23): 9165–9169.

    [92] [92] ZHENG C, LI L, WANG K, et al. Interfacial reactions in inorganic all-solid-state lithium batteries[J]. Batteries Supercaps, 2020, 4(1):8–38.

    [93] [93] YU J, KWOK S C T, LU Z, et al. A ceramic-PVDF composite membrane with modified interfaces as an ion-conducting electrolyte for solid-state lithium-ion batteries operating at room temperature[J]. Chem Electro Chem, 2018, 5(19): 2873–2881.

    [94] [94] XU D, SU J, JIN J, et al. In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler[J]. Adv Energy Mater, 2019, 9(25): 1900611

    [95] [95] YUAN Y, WU F, BAI Y, et al. Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode[J].Energy Storage Mater, 2019, 16: 411–418.

    [96] [96] BAG S, ZHOU C, KIM P J, et al. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries[J]. Energy Storage Mater, 2020, 24: 198–207.

    [97] [97] LIU K, ZHANG R, SUN J, et al. Polyoxyethylene (PEO)|PEO–perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries[J]. ACS Appl Mater Interfaces, 2019, 11(50): 46930–46937.

    [98] [98] YU X, LI J, MANTHIRAM A. Rational design of a laminated dual-polymer/polymer–ceramic composite electrolyte for high-voltage all-solid-state lithium batteries[J]. ACS Mater Lett, 2020, 2(4): 317–324.

    [99] [99] YU X, XUE L, GOODENOUGH J B, et al. Ambient‐temperature all-solid-state sodium batteries with a laminated composite electrolyte[J]. Adv Funct Mater, 2020, 31(2): 2002144

    [100] [100] LV F, WANG Z, SHI L, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. J Power Sources, 2019, 441: 227175

    [101] [101] SUN J, HE C, YAO X, et al. Hierarchical composite-solid- electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries[J]. Adv Funct Mater, 2020,31(1): 2006381

    [102] [102] HUO H, CHEN Y, LUO J, et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries[J]. Adv Energy Mater, 2019, 9(17):1804004

    [103] [103] CAO J, WANG L, SHANG Y, et al. Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries[J].Electrochim Acta, 2013, 111: 674–679.

    [104] [104] LI Y, WANG X, ZHOU H, et al. Thin solid electrolyte layers enabled by nanoscopic polymer binding[J]. ACS Energy Lette, 2020, 5(3):955–961.

    [105] [105] PAN K, ZHANG L, QIAN W, et al. A Flexible Ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Adv Mater, 2020, 32(17): e2000399.

    Tools

    Get Citation

    Copy Citation Text

    JIA Wanqing, SUN Ge, YAO Shiyu, CHEN Nan, DU Fei. Research Progress of Organic-Inorganic Composite Solid Electrolyte for Lithium Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 121

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jul. 30, 2021

    Accepted: --

    Published Online: Nov. 14, 2022

    The Author Email: Wanqing JIA (jiawq19@mails.jlu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20210622

    Topics