Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 1, 87(2024)
Research progress of tunable mid-infrared quantum cascade lasers
[2] [2] (ZHANG Zehan, JIANG Tao, ZHAN Zhiqiang, et al. The progress of quantum cascade lasers thermal management[J]. Journal of Terahertz Science and Electronic Information Technology, 2021,19(2):193-200.) doi:10.11805/TKYDA2019390.
[3] [3] FIGUEIREDO P, SUTTINGER M, GO R, et al. Progress in high-power continuous-wave quantum cascade lasers [Invited] [J].Applied Optics, 2017,56(31):H15-H23. doi:10.1364/AO.56.000H15.
[4] [4] ZHOU Wenjia, LU Quanyong, WU Donghai, et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm[J]. Optics Express, 2019,27(11):15776-15785. doi:10.1364/OE.27.015776.
[5] [5] MASHANOVICH G Z,MITCHELL C J,PENADES J S,et al. Germanium mid-infrared photonic devices[J]. Journal of Lightwave Technology, 2017,35(4):624-630. doi:10.1109/JLT.2016.2632301.
[6] [6] KOOIJMANS L M J, UITSLAG N A M, ZAHNISER M S, et al. Continuous and high-precision atmospheric concentration measurements of COS, CO2, CO and H2O using a Quantum Cascade Laser Spectrometer(QCLS) [J]. Atmospheric Measurement Techniques, 2016,9(11):5293-5314. doi:10.5194/amt-9-5293-2016.
[7] [7] NADEEM F, MANDON J, KHODABAKHSH A, et al. Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser[J]. Sensors, 2018,18(7):2050. doi:10.3390/s18072050.
[8] [8] GOLYAK I S, MOROZOV A N, SVETLICHNYI S I, et al. Identification of chemical compounds by the reflected spectra in the range of 5.3~12.8 μm using a tunable quantum cascade laser[J]. Russian Journal of Physical Chemistry B, 2019,13(4):557-564.doi:10.1134/S1990793119040055.
[9] [9] RAZEGHI M,LU Q Y,BANDYOPADHYAY N,et al. Quantum cascade lasers: from tool to product[J]. Optics Express, 2015,23(7):8462-8475. doi:10.1364/OE.23.008462.
[10] [10] PANG Xiaodan,OZOLINS O,SCHATZ R,et al. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature[J]. Optics Letters, 2017,42(18):3646-3649. doi:10.1364/OL.42.003646.
[11] [11] DIBA A, XIE Feng, CANEAU C, et al. Wavelength tuning of sampled-grating DBR quantum cascade lasers[C]// Conference on Lasers and Electro-Optics 2012. San Jose, California United States: Optica Publishing Group, 2012: CF3K. 3. doi: 10.1364/CLEO_SI.2012.CF3K.3.
[12] [12] XIE Feng,CANEAU C G,LEBLANC H P,et al. High power and high temperature continuous-wave operation of distributed Bragg reflector quantum cascade lasers[J]. Applied Physics Letters, 2014,104(7):071109. doi:10.1063/1.4863233.
[13] [13] DIBA A S,XIE Feng,GROSS B,et al. Application of a broadly tunable SG-DBR QCL for multi-species trace gas spectroscopy[J].Optics Express, 2015,23(21):27123-27133. doi:10.1364/oe.23.027123.
[14] [14] GUO Dingkai, LI Junyun, CHENG Liwei, et al. Widely tunable monolithic mid-infrared quantum cascade lasers using superstructure grating reflectors[J]. Photonics, 2016,3(2):25. doi:10.3390/photonics3020025.
[15] [15] YOSHINAGA H, HASHIMOTO J I, MORI H, et al. Mid-infrared quantum cascade laser integrated with distributed Bragg reflector[C]// Proc. SPIE 9755, Quantum Sensing and Nano Electronics and Photonics XIII. San Francisco, California, United States:SPIE, 2016:1-6. doi:10.1117/12.2212332.
[16] [16] CHENG Fengmin,JIA Zhiwei,ZHANG Jinchuan,et al. Stable single-mode operation of a distributed feedback quantum cascade laser integrated with a distributed Bragg reflector[J]. Photonics Research, 2017,5(4):320-323. doi:10.1364/PRJ.5.000320.
[17] [17] BARTALINI S,VITIELLO M S,DE NATALE P. Quantum cascade lasers:a versatile source for precise measurements in the mid/far-infrared range[J]. Measurement Science and Technology, 2014,25(1):012001. doi:10.1088/0957-0233/25/1/012001.
[18] [18] BECK M, HOFSTETTER D, AELLEN T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002,295(5553):301-305. doi:10.1126/science.1066408.
[19] [19] BOTEZ D, CHANG C C, MAWST L J. Temperature sensitivity of the electro-optical characteristics for mid-infrared(λ =3~16 μm) -emitting quantum cascade lasers[J]. Journal of Physics D:Applied Physics, 2015,49(4): 043001. doi:10.1088/0022-3727/49/4/043001.
[20] [20] SLIVKEN S, BANDYOPADHYAY N, TSAO S, et al. Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature[J]. Applied Physics Letters, 2012,100(26):261112. doi:10.1063/1.4732801.
[21] [21] SLIVKEN S, BANDYOPADHYAY N, TSAO S, et al. Dual section quantum cascade lasers with wide electrical tuning[C]//Quantum Sensing and Nanophotonic Devices X. San Francisco, California, United States: SPIE, 2013: 86310P. doi: 10.1117/12.2008506.
[22] [22] SLIVKEN S, BANDYOPADHYAY N, BAI Y, et al. Extended electrical tuning of quantum cascade lasers with digital concatenated gratings[J]. Applied Physics Letters, 2013,103(23):231110. doi:10.1063/1.4841635.
[23] [23] TITTEL F K, ALLRED J J, CAO Yingchun, et al. Quantum cascade laser-based sensor system for nitric oxide detection[J].Proceedings. SPIE 9370, Quantum Sensing and Nanophotonic Devices XII. San Francisco, California, United States: SPIE, 2015:93700V. doi:10.1117/12.2083718.
[24] [24] DANG Jingmin,YU Haiye,SUN Yujing,et al. A CO trace gas detection system based on continuous wave DFB-QCL[J]. Infrared Physics & Technology, 2017(82):183-191. doi:10.1016/j.infrared.2016.12.012.
[25] [25] YU Yajun, SANCHEZ N P, LOU Minhan, et al. CW DFB-QCL and EC-QCL based sensor for simultaneous NO and NO2 measurements via frequency modulation multiplexing using multi-pass absorption spectroscopy[C]// Quantum Sensing and Nano Electronics and Photonics XIV. San Francisco,California,United States:SPIE, 2017:1011108. doi:10.1117/12.2251228.
[26] [26] VAN H N,LOGHMARI Z,PHILIP H,et al. Long wavelength (λ>17 μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature[J]. Photonics, 2019,6(1):31. doi:10.3390/photonics6010031.
[27] [27] SHU Hong, SUTTINGER M, LYAKH A. Floquet-bloch analysis for distributed feedback quantum cascade lasers with a nonrectangular top-metal grating profile[J]. IEEE Journal of Quantum Electronics, 2019,55(1):1-7. doi:10.1109/JQE.2019.2891824.
[28] [28] FAIST J,GMACHL C,CAPASSO F,et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997,70(20):2670-2672. doi:10.1063/1.119208.
[29] [29] ZHAO Yue,ZHANG Jinchuan,JIA Zhiwei,et al. Low power consumption distributed-feedback quantum cascade lasers operating in continuous-wave mode above 90 °C at λ-7.2 μm[J]. Chinese Physics Letters, 2016,33(12):124201. doi:10.1088/0256-307X/33/12/124201.
[30] [30] MAULINI R, LYAKH A, TSEKOUN A, et al. λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature[J]. Optics Express, 2011,19(18):17203-17211. doi:10.1364/OE.19.017203.
[31] [31] MENG Bo,WANG Qijie. Broadly tunable single-mode mid-infrared quantum cascade lasers[J]. Journal of Optics, 2015, 17(2):023001. doi:10.1088/2040-8978/17/2/023001.
[32] [32] BABICHEV A V,DUDELEV V V,GLADYSHEV A G,et al. High-power quantum-cascade lasers emitting in the 8 μm wavelength range[J]. Technical Physics Letters, 2019,45(7):735-738. doi:10.1134/S1063785019070174.
[34] [34] ZHAO Zhibin,WANG Lijun,JIA Zhiwei,et al. Low-threshold external-cavity quantum cascade laser around 7.2 μm[J]. Optical Engineering, 2016,55(4):046116. doi:10.1117/1.OE.55.4.046116.
[35] [35] ZHAO Yue, ZHANG Jinchuan, ZHOU Yuhong, et al. External-cavity beam combining of 4-channel quantum cascade lasers[J]. Infrared Physics & Technology, 2017(85):52-55. doi:10.1016/j.infrared.2017.05.012.
[36] [36] NADEEM F, MANDON J, KHODABAKHSH A, et al. Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser[J]. Sensors, 2018,18(7):2050. doi:10.3390/s18072050.
[37] [37] CHEVALIER P, PICCARDO M, ANAND S, et al. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser[J]. Applied Physics Letters, 2018,112(6):061109. doi:10.1063/1.5018616.
[38] [38] MATSUOKA Y, PETERS S, SEMTSIV M P, et al. Tunable external cavity quantum cascade laser using intra-cavity outcoupling[C]// 2018 Conference on Lasers and Electro-Optics(CLEO). San Jose, CA, USA: IEEE, 2018: 1-2. doi: 10.1364/CLEO_AT.2018.JTu2A.18.
[39] [39] SERGACHEV I,MAULINI R,BISMUTO A,et al. Gain-guided broad area quantum cascade lasers emitting 23.5 W peak power at room temperature[J]. Optics Express, 2016,24(17):19063-19071. doi:10.1364/OE.24.019063.
[40] [40] JOUY P, WOLF J M, BIDAUX Y, et al. Dual comb operation of λ~8.2 μm quantum cascade laser frequency comb with 1 W optical power[J]. Applied Physics Letters, 2017,111(14):141102. doi:10.1063/1.4985102.
[41] [41] ZHAO Yue,ZHANG Jinchuan,CHENG Fengmin,et al. Tapered quantum cascade laser arrays integrated with talbot cavities[J].Nanoscale Research Letters, 2018,13(1):205. doi:10.1186/s11671-018-2617-z.
[42] [42] MALIK A, MUNEEB M, SHIMURA Y, et al. Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared[J]. Applied Physics Letters, 2013,103(16):161119. doi:10.1063/1.4826114.
[43] [43] RADOSAVLJEVIC S,BENEITEZ N T,KATUMBA A,et al. Mid-infrared vernier racetrack resonator tunable filter implemented on a Germanium on SOI waveguide platform [Invited][J]. Optical Materials Express, 2018,8(4):824-835. doi:10.1364/OME.8.000824.
[44] [44] RADOSAVLJEVIC S, RADOSAVLJEVI? A, SCHILLING C, et al. Thermally tunable quantum cascade laser with an external germanium-on-SOI distributed Bragg reflector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-7.doi:10.1109/JSTQE.2019.2933784.
[45] [45] NEDELJKOVIC M, VELASCO A V, KHOKHAR A Z, et al. Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip[J]. IEEE Photonics Technology Letters, 2016,28(4):528-531. doi:10.1109/LPT.2015.2496729.
[46] [46] ZHOU Wenjia, WU Donghai, MCCLINTOCK R, et al. High performance monolithic, broadly tunable mid-infrared quantum cascade lasers[J]. Optica, 2017,4(10):1228-1231. doi:10.1364/OPTICA.4.001228.
[47] [47] MALIK A,STANTON E J,LIU Junqian,et al. High performance 7×8 Ge-on-Si arrayed waveguide gratings for the midinfrared[J].IEEE Journal of Selected Topics in Quantum Electronics, 2018,24(6):1-8. doi:10.1109/JSTQE.2018.2819889.
[48] [48] PIER?CI?SKI K, KU?MICZ A, PIER?CI?SKA D, et al. Optimization of cavity designs of tapered AlInAs/InGaAs/InP quantum cascade lasers emitting at 4.5 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-9. doi: 10.1109/JSTQE.2019.2948500.
[49] [49] BABICHEV A V,GLADYSHEV A G,KUROCHKIN A S,et al. Room temperature lasing of multi-stage quantum-cascade lasers at 8 μm wavelength[J]. Semiconductors, 2018,52(8):1082-1085. doi:10.1134/S1063782618080031.
[50] [50] DUDELEV V V, LOSEV S N, MYLNIKOV V Y, et al. High temperature laser generation of quantum-cascade lasers in the spectral region of 8 μm[J]. Physics of the Solid State, 2018,60(11):2291-2294. doi:10.1134/S1063783418110057.
[51] [51] RADOSAVLJEVIC S,KUYKEN B,ROELKENS G. Efficient 5.2 μm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform[J]. Optics Express, 2017,25(16):19034-19042. doi:10.1364/OE.25.019034.
[52] [52] MALIK A,MUNEEB M,PATHAK S,et al. Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers[J]. IEEE Photonics Technology Letters, 2013,25(18):1805-1808. doi:10.1109/LPT.2013.2276479.
[53] [53] LYAKH A,SUTTINGER M,GO R,et al. 5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%[J]. Applied Physics Letters, 2016,109(12):121109. doi:10.1063/1.4963233.
[54] [54] RADOSAVLJEVIC S, RADOSAVLJEVI? A, SCHILLING C, et al. Thermally tunable quantum cascade laser with an external germanium-on-SOI distributed Bragg reflector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-7.doi:10.1109/JSTQE.2019.2933784.
Get Citation
Copy Citation Text
LIU Ying, JIANG Tao, YANG Qi, WANG Xuemin, ZHAN Zhiqiang, ZOU Ruijiao, LUO Jiawen, FAN Long, CHEN Fengwei, WU Weidong. Research progress of tunable mid-infrared quantum cascade lasers[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(1): 87
Category:
Received: Oct. 29, 2021
Accepted: --
Published Online: Jul. 5, 2024
The Author Email: Xuemin WANG (wangxuemin75@sohu.com)