Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 1, 87(2024)

Research progress of tunable mid-infrared quantum cascade lasers

LIU Ying, JIANG Tao, YANG Qi, WANG Xuemin*, ZHAN Zhiqiang, ZOU Ruijiao, LUO Jiawen, FAN Long, CHEN Fengwei, and WU Weidong
Author Affiliations
  • [in Chinese]
  • show less
    References(52)

    [2] [2] (ZHANG Zehan, JIANG Tao, ZHAN Zhiqiang, et al. The progress of quantum cascade lasers thermal management[J]. Journal of Terahertz Science and Electronic Information Technology, 2021,19(2):193-200.) doi:10.11805/TKYDA2019390.

    [3] [3] FIGUEIREDO P, SUTTINGER M, GO R, et al. Progress in high-power continuous-wave quantum cascade lasers [Invited] [J].Applied Optics, 2017,56(31):H15-H23. doi:10.1364/AO.56.000H15.

    [4] [4] ZHOU Wenjia, LU Quanyong, WU Donghai, et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm[J]. Optics Express, 2019,27(11):15776-15785. doi:10.1364/OE.27.015776.

    [5] [5] MASHANOVICH G Z,MITCHELL C J,PENADES J S,et al. Germanium mid-infrared photonic devices[J]. Journal of Lightwave Technology, 2017,35(4):624-630. doi:10.1109/JLT.2016.2632301.

    [6] [6] KOOIJMANS L M J, UITSLAG N A M, ZAHNISER M S, et al. Continuous and high-precision atmospheric concentration measurements of COS, CO2, CO and H2O using a Quantum Cascade Laser Spectrometer(QCLS) [J]. Atmospheric Measurement Techniques, 2016,9(11):5293-5314. doi:10.5194/amt-9-5293-2016.

    [7] [7] NADEEM F, MANDON J, KHODABAKHSH A, et al. Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser[J]. Sensors, 2018,18(7):2050. doi:10.3390/s18072050.

    [8] [8] GOLYAK I S, MOROZOV A N, SVETLICHNYI S I, et al. Identification of chemical compounds by the reflected spectra in the range of 5.3~12.8 μm using a tunable quantum cascade laser[J]. Russian Journal of Physical Chemistry B, 2019,13(4):557-564.doi:10.1134/S1990793119040055.

    [9] [9] RAZEGHI M,LU Q Y,BANDYOPADHYAY N,et al. Quantum cascade lasers: from tool to product[J]. Optics Express, 2015,23(7):8462-8475. doi:10.1364/OE.23.008462.

    [10] [10] PANG Xiaodan,OZOLINS O,SCHATZ R,et al. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature[J]. Optics Letters, 2017,42(18):3646-3649. doi:10.1364/OL.42.003646.

    [11] [11] DIBA A, XIE Feng, CANEAU C, et al. Wavelength tuning of sampled-grating DBR quantum cascade lasers[C]// Conference on Lasers and Electro-Optics 2012. San Jose, California United States: Optica Publishing Group, 2012: CF3K. 3. doi: 10.1364/CLEO_SI.2012.CF3K.3.

    [12] [12] XIE Feng,CANEAU C G,LEBLANC H P,et al. High power and high temperature continuous-wave operation of distributed Bragg reflector quantum cascade lasers[J]. Applied Physics Letters, 2014,104(7):071109. doi:10.1063/1.4863233.

    [13] [13] DIBA A S,XIE Feng,GROSS B,et al. Application of a broadly tunable SG-DBR QCL for multi-species trace gas spectroscopy[J].Optics Express, 2015,23(21):27123-27133. doi:10.1364/oe.23.027123.

    [14] [14] GUO Dingkai, LI Junyun, CHENG Liwei, et al. Widely tunable monolithic mid-infrared quantum cascade lasers using superstructure grating reflectors[J]. Photonics, 2016,3(2):25. doi:10.3390/photonics3020025.

    [15] [15] YOSHINAGA H, HASHIMOTO J I, MORI H, et al. Mid-infrared quantum cascade laser integrated with distributed Bragg reflector[C]// Proc. SPIE 9755, Quantum Sensing and Nano Electronics and Photonics XIII. San Francisco, California, United States:SPIE, 2016:1-6. doi:10.1117/12.2212332.

    [16] [16] CHENG Fengmin,JIA Zhiwei,ZHANG Jinchuan,et al. Stable single-mode operation of a distributed feedback quantum cascade laser integrated with a distributed Bragg reflector[J]. Photonics Research, 2017,5(4):320-323. doi:10.1364/PRJ.5.000320.

    [17] [17] BARTALINI S,VITIELLO M S,DE NATALE P. Quantum cascade lasers:a versatile source for precise measurements in the mid/far-infrared range[J]. Measurement Science and Technology, 2014,25(1):012001. doi:10.1088/0957-0233/25/1/012001.

    [18] [18] BECK M, HOFSTETTER D, AELLEN T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002,295(5553):301-305. doi:10.1126/science.1066408.

    [19] [19] BOTEZ D, CHANG C C, MAWST L J. Temperature sensitivity of the electro-optical characteristics for mid-infrared(λ =3~16 μm) -emitting quantum cascade lasers[J]. Journal of Physics D:Applied Physics, 2015,49(4): 043001. doi:10.1088/0022-3727/49/4/043001.

    [20] [20] SLIVKEN S, BANDYOPADHYAY N, TSAO S, et al. Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature[J]. Applied Physics Letters, 2012,100(26):261112. doi:10.1063/1.4732801.

    [21] [21] SLIVKEN S, BANDYOPADHYAY N, TSAO S, et al. Dual section quantum cascade lasers with wide electrical tuning[C]//Quantum Sensing and Nanophotonic Devices X. San Francisco, California, United States: SPIE, 2013: 86310P. doi: 10.1117/12.2008506.

    [22] [22] SLIVKEN S, BANDYOPADHYAY N, BAI Y, et al. Extended electrical tuning of quantum cascade lasers with digital concatenated gratings[J]. Applied Physics Letters, 2013,103(23):231110. doi:10.1063/1.4841635.

    [23] [23] TITTEL F K, ALLRED J J, CAO Yingchun, et al. Quantum cascade laser-based sensor system for nitric oxide detection[J].Proceedings. SPIE 9370, Quantum Sensing and Nanophotonic Devices XII. San Francisco, California, United States: SPIE, 2015:93700V. doi:10.1117/12.2083718.

    [24] [24] DANG Jingmin,YU Haiye,SUN Yujing,et al. A CO trace gas detection system based on continuous wave DFB-QCL[J]. Infrared Physics & Technology, 2017(82):183-191. doi:10.1016/j.infrared.2016.12.012.

    [25] [25] YU Yajun, SANCHEZ N P, LOU Minhan, et al. CW DFB-QCL and EC-QCL based sensor for simultaneous NO and NO2 measurements via frequency modulation multiplexing using multi-pass absorption spectroscopy[C]// Quantum Sensing and Nano Electronics and Photonics XIV. San Francisco,California,United States:SPIE, 2017:1011108. doi:10.1117/12.2251228.

    [26] [26] VAN H N,LOGHMARI Z,PHILIP H,et al. Long wavelength (λ>17 μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature[J]. Photonics, 2019,6(1):31. doi:10.3390/photonics6010031.

    [27] [27] SHU Hong, SUTTINGER M, LYAKH A. Floquet-bloch analysis for distributed feedback quantum cascade lasers with a nonrectangular top-metal grating profile[J]. IEEE Journal of Quantum Electronics, 2019,55(1):1-7. doi:10.1109/JQE.2019.2891824.

    [28] [28] FAIST J,GMACHL C,CAPASSO F,et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997,70(20):2670-2672. doi:10.1063/1.119208.

    [29] [29] ZHAO Yue,ZHANG Jinchuan,JIA Zhiwei,et al. Low power consumption distributed-feedback quantum cascade lasers operating in continuous-wave mode above 90 °C at λ-7.2 μm[J]. Chinese Physics Letters, 2016,33(12):124201. doi:10.1088/0256-307X/33/12/124201.

    [30] [30] MAULINI R, LYAKH A, TSEKOUN A, et al. λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature[J]. Optics Express, 2011,19(18):17203-17211. doi:10.1364/OE.19.017203.

    [31] [31] MENG Bo,WANG Qijie. Broadly tunable single-mode mid-infrared quantum cascade lasers[J]. Journal of Optics, 2015, 17(2):023001. doi:10.1088/2040-8978/17/2/023001.

    [32] [32] BABICHEV A V,DUDELEV V V,GLADYSHEV A G,et al. High-power quantum-cascade lasers emitting in the 8 μm wavelength range[J]. Technical Physics Letters, 2019,45(7):735-738. doi:10.1134/S1063785019070174.

    [34] [34] ZHAO Zhibin,WANG Lijun,JIA Zhiwei,et al. Low-threshold external-cavity quantum cascade laser around 7.2 μm[J]. Optical Engineering, 2016,55(4):046116. doi:10.1117/1.OE.55.4.046116.

    [35] [35] ZHAO Yue, ZHANG Jinchuan, ZHOU Yuhong, et al. External-cavity beam combining of 4-channel quantum cascade lasers[J]. Infrared Physics & Technology, 2017(85):52-55. doi:10.1016/j.infrared.2017.05.012.

    [36] [36] NADEEM F, MANDON J, KHODABAKHSH A, et al. Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser[J]. Sensors, 2018,18(7):2050. doi:10.3390/s18072050.

    [37] [37] CHEVALIER P, PICCARDO M, ANAND S, et al. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser[J]. Applied Physics Letters, 2018,112(6):061109. doi:10.1063/1.5018616.

    [38] [38] MATSUOKA Y, PETERS S, SEMTSIV M P, et al. Tunable external cavity quantum cascade laser using intra-cavity outcoupling[C]// 2018 Conference on Lasers and Electro-Optics(CLEO). San Jose, CA, USA: IEEE, 2018: 1-2. doi: 10.1364/CLEO_AT.2018.JTu2A.18.

    [39] [39] SERGACHEV I,MAULINI R,BISMUTO A,et al. Gain-guided broad area quantum cascade lasers emitting 23.5 W peak power at room temperature[J]. Optics Express, 2016,24(17):19063-19071. doi:10.1364/OE.24.019063.

    [40] [40] JOUY P, WOLF J M, BIDAUX Y, et al. Dual comb operation of λ~8.2 μm quantum cascade laser frequency comb with 1 W optical power[J]. Applied Physics Letters, 2017,111(14):141102. doi:10.1063/1.4985102.

    [41] [41] ZHAO Yue,ZHANG Jinchuan,CHENG Fengmin,et al. Tapered quantum cascade laser arrays integrated with talbot cavities[J].Nanoscale Research Letters, 2018,13(1):205. doi:10.1186/s11671-018-2617-z.

    [42] [42] MALIK A, MUNEEB M, SHIMURA Y, et al. Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared[J]. Applied Physics Letters, 2013,103(16):161119. doi:10.1063/1.4826114.

    [43] [43] RADOSAVLJEVIC S,BENEITEZ N T,KATUMBA A,et al. Mid-infrared vernier racetrack resonator tunable filter implemented on a Germanium on SOI waveguide platform [Invited][J]. Optical Materials Express, 2018,8(4):824-835. doi:10.1364/OME.8.000824.

    [44] [44] RADOSAVLJEVIC S, RADOSAVLJEVI? A, SCHILLING C, et al. Thermally tunable quantum cascade laser with an external germanium-on-SOI distributed Bragg reflector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-7.doi:10.1109/JSTQE.2019.2933784.

    [45] [45] NEDELJKOVIC M, VELASCO A V, KHOKHAR A Z, et al. Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip[J]. IEEE Photonics Technology Letters, 2016,28(4):528-531. doi:10.1109/LPT.2015.2496729.

    [46] [46] ZHOU Wenjia, WU Donghai, MCCLINTOCK R, et al. High performance monolithic, broadly tunable mid-infrared quantum cascade lasers[J]. Optica, 2017,4(10):1228-1231. doi:10.1364/OPTICA.4.001228.

    [47] [47] MALIK A,STANTON E J,LIU Junqian,et al. High performance 7×8 Ge-on-Si arrayed waveguide gratings for the midinfrared[J].IEEE Journal of Selected Topics in Quantum Electronics, 2018,24(6):1-8. doi:10.1109/JSTQE.2018.2819889.

    [48] [48] PIER?CI?SKI K, KU?MICZ A, PIER?CI?SKA D, et al. Optimization of cavity designs of tapered AlInAs/InGaAs/InP quantum cascade lasers emitting at 4.5 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-9. doi: 10.1109/JSTQE.2019.2948500.

    [49] [49] BABICHEV A V,GLADYSHEV A G,KUROCHKIN A S,et al. Room temperature lasing of multi-stage quantum-cascade lasers at 8 μm wavelength[J]. Semiconductors, 2018,52(8):1082-1085. doi:10.1134/S1063782618080031.

    [50] [50] DUDELEV V V, LOSEV S N, MYLNIKOV V Y, et al. High temperature laser generation of quantum-cascade lasers in the spectral region of 8 μm[J]. Physics of the Solid State, 2018,60(11):2291-2294. doi:10.1134/S1063783418110057.

    [51] [51] RADOSAVLJEVIC S,KUYKEN B,ROELKENS G. Efficient 5.2 μm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform[J]. Optics Express, 2017,25(16):19034-19042. doi:10.1364/OE.25.019034.

    [52] [52] MALIK A,MUNEEB M,PATHAK S,et al. Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers[J]. IEEE Photonics Technology Letters, 2013,25(18):1805-1808. doi:10.1109/LPT.2013.2276479.

    [53] [53] LYAKH A,SUTTINGER M,GO R,et al. 5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%[J]. Applied Physics Letters, 2016,109(12):121109. doi:10.1063/1.4963233.

    [54] [54] RADOSAVLJEVIC S, RADOSAVLJEVI? A, SCHILLING C, et al. Thermally tunable quantum cascade laser with an external germanium-on-SOI distributed Bragg reflector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-7.doi:10.1109/JSTQE.2019.2933784.

    Tools

    Get Citation

    Copy Citation Text

    LIU Ying, JIANG Tao, YANG Qi, WANG Xuemin, ZHAN Zhiqiang, ZOU Ruijiao, LUO Jiawen, FAN Long, CHEN Fengwei, WU Weidong. Research progress of tunable mid-infrared quantum cascade lasers[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(1): 87

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 29, 2021

    Accepted: --

    Published Online: Jul. 5, 2024

    The Author Email: Xuemin WANG (wangxuemin75@sohu.com)

    DOI:10.11805/tkyda2021386

    Topics