Infrared Technology, Volume. 45, Issue 8, 799(2023)

Research Progress of InAs/GaSb Type-II Superlattice Long-wave Infrared Detector

Yafang TIAN1、*, Yanli SHI2, and Fangjiang LI1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(36)

    [1] [1] Nguyen B M, Hoffman D, WEI Y, et al. Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 ?m [J].Applied Physics Letters, 2007, 90(23): 231108.

    [2] [2] Nguyen B M, Bogdanov S, Pour S A, et al. Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection[J]. Applied Physics Letters, 2009,95(18): 183502.

    [3] [3] LI Xiaochao, JIANG Dongwei, ZHANG Yong, et al. Investigations of quantum efficiency in type-II InAs/GaSb very long wavelength infrared superlattice detectors[J]. Superlattices and Microstructures, 2016, 92: 330-336.

    [4] [4] Khoshakhlagh A, H?glund L, Ting D Z, et al. High performance longwave type-II superlattice infrared detectors[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials,Processing, Measurement, and Phenomena, 2013, 31(3): 03C122.

    [5] [5] Kim H S, Cellek O O, LIN Z Y, et al. Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices[J]. Applied Physics Letters, 2012, 101(16): 161114.

    [6] [6] ZHAO Yu, TENG Yan, HAO Xiujun, et al. Optimization of longwavelength InAs/GaSb superlattice photodiodes with Al-free barriers [J].IEEE Photonics Technology Letters, 2019, 32(1): 19-22.

    [7] [7] HAN Xi, XIANG Wei, HAO Hongyue, et al. Very long wavelength infrared focal plane arrays with 50% cutoff wavelength based on type-II InAs/GaSb superlattice[J]. Chin. Phys. B, 2017, 26(1): 018505.

    [8] [8] Plis E, Khoshakhlagh A, Myers S, et al. Molecular beam epitaxy growth and characterization of type-II InAs/GaSb strained layer superlattices for long-wave infrared detection[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(3): C3G13-C3G18.

    [9] [9] TENG Yan, ZHAO Yu, WU Qihua, et al. High-performance longwavelength InAs/GaSb superlattice detectors grown by MOCVD [J]. IEEE Photonics Technology Letters, 2018, 31(2): 185-188.

    [10] [10] TING D Z Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Applied Physics Letters, 2009, 95(2): 023508.

    [11] [11] Pierre-Yves Delaunay, Binh Minh Nguyen, Darin Hoffman, et al.320×256 infrared focal plane array based on type II InAs/GaSb superlattice with a 12 ?m cutoff wavelength[C]//Proc. of SPIE, 2007,6542: 654204-1.

    [12] [12] WANG Fangfang, XU Zhicheng, BAI Zhizhong, et al. Fabrication of a 1024×1024 format long wavelength infrared focal plane array based on type-II superlattice and barrier enhanced structure[J]. Infrared Physics and Technology, 2021, 115: 103700.

    [13] [13] HUANG Min, CHEN Jianxin, XU Zhicheng, et al. InAs/GaAsSb Type-II superlattice LWIR focal plane arrays detectors grown on InAs substrates[J]. IEEE Photonics Technology Letters, 2020, 32(8): 453-456.

    [14] [14] XU Zhicheng, CHEN Jianxin, WANG Fangfang, et al. High performance InAs/GaAsSb superlattice long wavelength infrared photo-detectors grown on InAs substrates[J]. Semiconductor Science and Technology,2017, 32(5): 055011.

    [15] [15] Hoang A M, CHEN G, Chevallier R, et al. High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection[J]. Appl. Phys. Lett., 2014, 104: 251105.

    [16] [16] Haddadi A, CHEN G, Chevallier R, et al. InAs/InAs1?xSbx type-II superlattices for high performance long wavelength infrared detection[J].Appl. Phys. Lett., 2014, 105: 121104.

    [17] [17] Haddadi A, Dehzangi A, Chevallier R, et al. Bias-selectable nBn dualband long-/very long-wavelength infrared photodetectors based on InAs/InAs1?xSbx/AlAs1?xSbx type-II superlattices[J]. Scientific Reports,2017, 7(1): 3379.

    [18] [18] XU Zhicheng, CHEN Jianxin, WANG Fangfang, et al. MBE growth and characterization of type-II InAs/GaSb superlattices LWIR materials and photodetectors with barrier structures[J]. Journal of Crystal Growth, 2017,477: 277-282.

    [19] [19] HUANG Min, CHEN Jianxin, XU Jiajia, et al. ICP etching for InAs-based InAs/GaAsSb superlattice long wavelength infrared detectors[J]. Infrared Physics & Technology, 2018, 90: 110-114.

    [20] [20] WANG Fangfang, CHEN Jianxin, XU Zhicheng, et al. Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection[J]. Optics Express,2017, 25(3): 1629-1635.

    [21] [21] Kyrtsos A, Matsubara M, Bellotti E. Investigation of the band gaps and bowing parameter of InAs1?xSbx alloys using the modified Becke-Johnson potential[J]. Physical Review Materials, 2020, 4(1): 014603.

    [23] [23] Donetsky D, Svensson S, Vorobjev L E. Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures[J]. Appl.Phys. Lett., 2009, 95(21): 212104.

    [24] [24] Connelly B C, Metcalfe G D, SHEN H, et al. Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence[J].Appl. Phys. Lett., 2010, 97(25): 251117.

    [25] [25] WANG Fangfang, CHEN Jianxin, XU Zhicheng, et al. InAs-based type-II superlattice long wavelength photodetectors[C]//Proc. of SPIE, 2016,9755: 975519.

    [26] [26] WANG Fangfang, CHE Jianxin, XU Zhicheng, et al. InAs-based InAs/GaAsSb type-II superlattices: growth and characterization[J]. Cryst.Growth, 2015, 416: 130-133.

    [27] [27] HUANG Yong, XIONG Min, WU Qihua, et al. High-performance midwavelength InAs/GaSb super-lattice infrared detectors grown by production-scale metalorganic chemical vapor deposition[J]. IEEE J. Quantum Electron., 2017, 53(5): 1-5.

    [29] [29] LIU Jiafeng, TENG Yan, HAO Xiujun, et al. Long-wavelength InAs/GaSb superlattice detectors on InAs substrates with n-on-p polarity[J].IEEE Journal of Quantum Electronics, 2020, 56(5): 1-6.

    [30] [30] Swaminathan V, Reynolds Jr C L, Geva M. Zn diffusion behavior in InGaAsP/InP capped mesa buried heterostructures[J]. Applied Physics Letters, 1995, 66(20): 2685-2687.

    [31] [31] HUANG Min, CHEN Jianxin, ZHOU Yi, et al. Light-harvesting for high quantum efficiency in InAs-based InAs/GaAsSb type-II superlattices long wavelength infrared photodetectors[J]. Applied Physics Letters, 2019,114(14): 141102.

    [33] [33] WANG Liang, XU Zhicheng, XU Jiajia, et al. Fabrication and characterization of InAs/GaSb type-II superlattice long-wavelength infrared detectors aiming high temperature sensitivity[J]. Journal of Lightwave Technology, 2020, 38(21): 6129-6134.

    [36] [36] Papis-Polakowska E. Surface treatment of GaSb and related materials for the processing of mid-infrared semiconductor devices[J]. Electron Technology: Internet Journal, 2005, 37(4): 1-34.

    [37] [37] HUANG Min, CHEN Jianxin, XU Jiajia, et al. ICP etching for InAs-based InAs/GaAsSb superlattice long wavelength infrared detectors[J]. Infrared Physics & Technology, 2018, 90: 110-114.

    [38] [38] XU Jiajia, XU Zhicheng, BAI Zhizhong, et al. Effects of etching processes on surface dark current of long-wave infrared InAs/GaSb superlattice detectors[J]. Infrared Physics & Technology, 2020, 107: 103277.

    [42] [42] Rogalski A. Next decade in infrared detectors[C]//Proc. of SPIE, 2017,10433: 104330L.

    Tools

    Get Citation

    Copy Citation Text

    TIAN Yafang, SHI Yanli, LI Fangjiang. Research Progress of InAs/GaSb Type-II Superlattice Long-wave Infrared Detector[J]. Infrared Technology, 2023, 45(8): 799

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 5, 2023

    Accepted: --

    Published Online: Dec. 15, 2023

    The Author Email: TIAN Yafang (xntyf@sohu.com)

    DOI:

    CSTR:32186.14.

    Topics