Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0116003(2024)

Research Progress of New Deep Ultraviolet Nonlinear Optical Crystals (Invited)

Shilie Pan†、* and Fangfang Zhang1、†
Author Affiliations
  • Xinjiang Key Laboratory of Functional Crystal Materials, Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang , China
  • show less
    References(52)

    [1] Hecht J. Short history of laser development[J]. Optical Engineering, 49, 091002(2010).

    [2] Luo Q, Bo F, Kong Y F et al. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 5, 034002(2023).

    [3] Dai F, Tian Q Q, Huang S Y et al. Photon pair generation in lithium niobate waveguide periodically poled by femtosecond laser[J]. Chinese Optics Letters, 21, 042701(2023).

    [4] Yang G, Shi H S, Yao Y et al. Long-term frequency-stabilized optical frequency comb based on a turnkey Ti: sapphire mode-locked laser[J]. Chinese Optics Letters, 19, 121405(2021).

    [5] Xu Z Y, Zhang S J, Zhou X J et al. Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy[J]. Frontiers of Information Technology & Electronic Engineering, 20, 885-913(2019).

    [6] Couprie M E. New generation of light sources: present and future[J]. Journal of Electron Spectroscopy and Related Phenomena, 196, 3-13(2014).

    [7] Huang C M, Zhang F F, Pan S L, Reedijk J, Poeppelmeier K R. Inorganic nonlinear optical materials[M]. Comprehensive inorganic chemistry III, 3-44(2023).

    [8] Halasyamani P S, Rondinelli J M. The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals[J]. Nature Communications, 9, 2972(2018).

    [9] Cheng B L, Li Z J, Chu Y et al. (NH4)3B11PO19F3: a deep-UV nonlinear optical crystal with unique[B5PO10F]∞ layers[J]. National Science Review, 9, nwac110(2022).

    [10] Li Z J, Jin W Q, Zhang F F et al. Exploring short-wavelength phase-matching nonlinear optical crystals by employing KBe2BO3F2 as the template[J]. ACS Central Science, 8, 1557-1564(2022).

    [11] Chen C T, Wu B C, Jiang A D et al. A new-type ultraviolet SHG crystal: β-BaB2O4[J]. Science in China, Series B-Chemistry, Biological, Agricultural, Medical & Earth Sciences, 28, 235-243(1985).

    [12] Chen C T, Wu Y C, Jiang A D et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B Optical Physics, 6, 616-621(1989).

    [13] Chen C T, Xu Z Y. Prism coupling technique and deep-UV harmonic output of KBBF crystal[J]. Journal of Synthetic Crystals, 31, 224-227(2002).

    [14] Chen C T, Sasaki T, Li R K et al[M]. Nonlinear optical borate crystals: principals and applications(2012).

    [15] Sasaki T, Mori Y, Yoshimura M et al. Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light[J]. Materials Science and Engineering: R: Reports, 30, 1-54(2000).

    [16] Mutailipu M, Zhang M, Wu H P et al. Ba3Mg3(BO3)3F3 polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials[J]. Nature Communications, 9, 3089(2018).

    [17] Kong F, Huang S P, Sun Z M et al. Se2(B2O7): a new type of second-order NLO material[J]. Journal of the American Chemical Society, 128, 7750-7751(2006).

    [18] Mutailipu M, Yang Z H, Pan S L. Toward the enhancement of critical performance for deep-ultraviolet frequency-doubling crystals utilizing covalent tetrahedra[J]. Accounts of Materials Research, 2, 282-291(2021).

    [19] Mutailipu M, Pan S L. Emergent deep-ultraviolet nonlinear optical candidates[J]. Angewandte Chemie International Edition, 59, 20302-20317(2020).

    [20] Mutailipu M, Zhang M, Yang Z H et al. Targeting the next generation of deep-ultraviolet nonlinear optical materials: expanding from borates to borate fluorides to fluorooxoborates[J]. Accounts of Chemical Research, 52, 791-801(2019).

    [21] Li H, Min J M, Yang Z H et al. Prediction of novel van der Waals boron oxides with superior deep-ultraviolet nonlinear optical performance[J]. Angewandte Chemie International Edition, 60, 10791-10797(2021).

    [22] Yang Z H, Lei B H, Zhang W Y et al. Module-analysis-assisted design of deep ultraviolet fluorooxoborates with extremely large gap and high structural stability[J]. Chemistry of Materials, 31, 2807-2813(2019).

    [23] Huang W Q, Zhao S G, Luo J H. Recent development of non-π-conjugated deep ultraviolet nonlinear optical materials[J]. Chemistry of Materials, 34, 5-28(2022).

    [24] Kang L, Lin Z S. Deep-ultraviolet nonlinear optical crystals: concept development and materials discovery[J]. Light: Science & Applications, 11, 201(2022).

    [25] Kang L, Liang F, Lin Z S et al. Deep-ultraviolet nonlinear optical crystals by design: a computer-aided modeling blueprint from first principles[J]. Science China Materials, 63, 1597-1612(2020).

    [26] Wu B C, Tang D Y, Ye N et al. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal[J]. Optical Materials, 5, 105-109(1996).

    [27] Chen C T, Wu Y C, Li R K. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series[J]. International Reviews in Physical Chemistry, 8, 65-91(1989).

    [28] Chen C T, Liu G Z. Recent advances in nonlinear optical and electro-optical materials[J]. Annual Review of Materials Science, 16, 203-243(1986).

    [29] Li R K. On the anionic group approximation to the borate nonlinear optical materials[J]. Crystals, 7, 50(2017).

    [30] Chen C T, Wang G L, Wang X Y et al. Deep-UV nonlinear optical crystal KBe2BO3F2: discovery, growth, optical properties and applications[J]. Applied Physics B, 97, 9-25(2009).

    [31] Wang X Y, Liu L J. KBe2BO3F2 crystal and all-solid-state deep ultraviolet laser[J]. Chinese Journal of Quantum Electronics, 38, 131-147, 130(2021).

    [32] Togashi T, Kanai T, Sekikawa T et al. Generation of vacuum-ultraviolet light by an optically contacted, prism-coupled KBe2BO3F2 crystal[J]. Optics Letters, 28, 254-256(2003).

    [33] Xu B, Liu L J, Wang X Y et al. Generation of high power 200 mW laser radiation at 177.3 nm in KBe2BO3F2 crystal[J]. Applied Physics B, 121, 489-494(2015).

    [34] Dai S B, Chen M, Zhang S J et al. 2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd: YAG laser in KBBF[J]. Laser Physics Letters, 13, 035401(2016).

    [35] Chen C T, Luo S Y, Wang X Y et al. Deep UV nonlinear optical crystal: RbBe2(BO3)F2[J]. Journal of the Optical Society of America B, 26, 1519-1525(2009).

    [36] Zhang X, Wang Z M, Luo S Y et al. Widely tunable fourth harmonic generation of a Ti: sapphire laser based on RBBF crystal[J]. Applied Physics B, 102, 825-830(2011).

    [37] Wu H X, Wang G L, Wang X Y et al. Sellmeier equations and phase-matching characteristics of the nonlinear optical crystal RbBe2BO3F2[J]. Applied Optics, 48, 4118-4123(2009).

    [38] Kang L, Luo S Y, Peng G et al. First-principles design of a deep-ultraviolet nonlinear-optical crystal from KBe2BO3F2 to NH4Be2BO3F2[J]. Inorganic Chemistry, 54, 10533-10535(2015).

    [39] Peng G, Ye N, Lin Z S et al. NH4Be2BO3F2 and γ-Be2BO3F: overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 57, 8968-8972(2018).

    [40] Shi G Q, Wang Y, Zhang F F et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 139, 10645-10648(2017).

    [41] Wang X F, Wang Y, Zhang B B et al. CsB4O6F: a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units[J]. Angewandte Chemie International Edition, 56, 14119-14123(2017).

    [42] Zhang Z Z, Wang Y, Zhang B B et al. Polar fluorooxoborate, NaB4O6F: a promising material for ionic conduction and nonlinear optics[J]. Angewandte Chemie International Edition, 57, 6577-6581(2018).

    [43] Wang Y, Zhang B B, Yang Z H et al. Cation-tuned synthesis of fluorooxoborates: towards optimal deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 57, 2150-2154(2018).

    [44] Mutailipu M, Han J, Li Z et al. Achieving the full-wavelength phase-matching for efficient nonlinear optical frequency conversion in C(NH2)3BF4[J]. Nature Photonics, 17, 694-701(2023).

    [45] Liu H N, Wu H P, Hu Z G et al. Cs3[(BOP)2(B3O7)3]: a deep-ultraviolet nonlinear optical crystal designed by optimizing matching of cation and anion groups[J]. Journal of the American Chemical Society, 145, 12691-12700(2023).

    [46] Chen X L, He M, Xu Y P et al. KCaF(CO3) from X-ray powder data[J]. Acta Crystallographica Section E, 60, i50-i51(2004).

    [47] Ben Ali A, Maisonneuve V, Smiri L S et al. Synthesis and crystal structure of BaZn(CO3)F2; revision of the structure of BaMn(CO3)F2[J]. Solid State Sciences, 4, 891-894(2002).

    [48] Sun Y P, Huang Q Z, Wu L et al. A neutron powder investigation of the structure of KCaCO3F at various temperatures[J]. Journal of Alloys and Compounds, 417, 13-17(2006).

    [49] Zou G H, Ye N, Huang L et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (a=K, Rb, Cs; B=Ca, Sr, Ba) as nonlinear optical materials[J]. Journal of the American Chemical Society, 133, 20001-20007(2011).

    [50] Kang L, Luo S Y, Huang H W et al. Prospects for fluoride carbonate nonlinear optical crystals in the UV and deep-UV regions[J]. The Journal of Physical Chemistry C, 117, 25684-25692(2013).

    [51] Zhang W, Halasyamani P S. Crystal growth and optical properties of a UV nonlinear optical material KSrCO3F[J]. CrystEngComm, 19, 4742-4748(2017).

    [52] Kang L, Lin Z S, Qin J G et al. Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2[J]. Scientific Reports, 3, 1366(2013).

    Tools

    Get Citation

    Copy Citation Text

    Shilie Pan, Fangfang Zhang. Research Progress of New Deep Ultraviolet Nonlinear Optical Crystals (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0116003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Dec. 1, 2023

    Accepted: Dec. 16, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Pan Shilie (slpan@ms.xjb.ac.cn)

    DOI:10.3788/LOP232773

    Topics