Electronics Optics & Control, Volume. 32, Issue 3, 101(2025)
Aircraft Detection in SAR Images Based on Improved YOLOv8
[5] [5] TAN Y,LI Q,LI Y,et al. Aircraft detection in high-resolution SAR images based on a gradient textural saliency map [J]. Sensors,2015,15(9):23071-23094.
[6] [6] DOU F Z,DIAO W H,SUN X,et al. Aircraft recognition in high resolution SAR images using saliency map and scattering structure features [C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE,2016: 1575-1578.
[8] [8] GUO Q,WANG H P,XU F. Aircraft detection in high-resolution SAR images using scattering feature information [C]//2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Xiamen: IEEE,2019: 1-5.
[9] [9] ZHAO Y,ZHAO L J,LIU Z,et al. Attentional feature refinement and alignment network for aircraft detection in SAR imagery [J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:5220616.
[10] [10] WANG Z,XU N,GUO J X,et al. SCFNet: semantic condition constraint guided feature aware network for aircraft detection in SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60: 5239420.
[11] [11] SUN X,LV Y X,WANG Z R,et al. SCAN: scattering characteristics analysis network for few-shot aircraft classification in high-resolution SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60: 1-17.
[12] [12] TAN S Y,CHEN L F,PAN Z H,et al. Geospatial contextual attention mechanism for automatic and fast airport detection in SAR imagery [J]. IEEE Access,2020,8:173627-173640.
[13] [13] WOO S,PARK J,LEE J Y,et al. CBAM: convolutional block attention module [C]//Proceedings of the 2018 European Conference on Computer Vision. Munich: Springer,2018: 3-19.
[14] [14] LI C,ZHOU A J,YAO A B. Omni-dimensional dynamic convolution [R]. Los Alamos: arXiv Preprint,2022: arXiv: 2209.07947.
[15] [15] ZHU X Z,HU H,LIN S,et al. Deformable ConvNets V2: more deformable,better results [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE,2019: 9300-9308.
[16] [16] GUO M H,LU C Z,LIU Z N,et al. Visual attention network [R]. Los Alamos: arXiv Preprint,2022: arXiv: 2202.09741.
[17] [17] AZAD R,NIGGEMEIER L,HUTTRMANN M,et al. Beyond self-attention: deformable large kernel attention for medical image segmentation [R]. Los Alamos: arXiv Preprint,2023: arXiv: 2309.00121.
[18] [18] TONG Z J,CHEN Y H,XU Z W,et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism [R]. Los Alamos: arXiv Preprint,2023: arXiv: 2301.10051.
[19] [19] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327.
[20] [20] ZHANG P,XU H,TIAN T,et al. SEFEPNet: scale expansion and feature enhancement pyramid network for SAR aircraft detection with small sample dataset [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15: 3365-3375.
[22] [22] LIU W,ANGUELOV D,ERHAN D,et al. SSD: single shot multibox detector [C]//Computer Vision-ECCV 2016: 14th European Conference. Cham: Springer,2016: 21-37.
[23] [23] REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6): 1137-1149.
Get Citation
Copy Citation Text
QIU Linlin, ZHU Weigang, LI Yonggang, QIU Lei, LI Xuanchao. Aircraft Detection in SAR Images Based on Improved YOLOv8[J]. Electronics Optics & Control, 2025, 32(3): 101
Category:
Received: Mar. 6, 2024
Accepted: Mar. 21, 2025
Published Online: Mar. 21, 2025
The Author Email: