Journal of Innovative Optical Health Sciences, Volume. 2, Issue 1, 67(2009)
OBSERVING NEURONAL ACTIVITIES WITH RANDOM ACCESS TWO-PHOTON MICROSCOPE
[1] [1] Chance, F. S., Abbott, L. F. and Reyes, A. D., “Gain modulation from background synaptic input,” Neuron 35, 773–782 (2002).
[2] [2] Augustine, G. J., Santamaria, F. and Tanaka, K., “Local calcium signaling in neurons,” Neuron 40, 331–346 (2003).
[3] [3] Gabbiani, F., Krapp, H. G., Koch, C. and Laurent, G., “Multiplicative computation in a visual neuron sensitive to looming,” Nature 420, 320–324 (2002).
[4] [4] Yuste, R. and Tank, D.W., “Dendritic integration in mammalian neurons, a century after Cajal,” Neuron 16, 701–716 (1996).
[5] [5] Yuste, R. and Denk, W., “Dendritic spines as basic functional units of neuronal integration,” Nature 375, 682–684 (1995).
[6] [6] Seamans, J. K., Gorelova, N. A. and Yang, C. R., “Contributions of voltage-gated Ca2+ channels in the proximal versus distal dendrites to synaptic integration in prefrontal cortical neurons,” J. Neurosci. 17, 5936–5948 (1997).
[7] [7] Pawley, J. B., Handbook of Biological Confocal Microscopy (Plenum Press, New York, 1995).
[8] [8] Fan, G. Y., Fujisaki, H., Miyawaki, A., Tsay, R. K., Tsien, R. Y. and Ellisman, M. H., “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
[9] [9] Bewersdorf, J., Pick, R. and Hell, S. W., “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
[10] [10] Kurtz, R., Fricke, M., Kalb, J., Tinnefeld, P. and Sauer, M., “Application of multiline two-photon microscopy to functional in vivo imaging,” J. Neurosci. Methods 151, 276–286 (2006).
[11] [11] Iyer, V., Losavio, B. E. and Saggau, P., “Compensation of spatial and temporal dispersion for acoustooptic multiphoton laserscanning microscopy,” J. Biomed. Opt. 8, 460–471 (2003).
[12] [12] Iyer, V., Hoogland, T. M. and Saggau, P., “Fast functional imaging of single neurons using randomaccess multiphoton (RAMP) microscopy,” J. Neurophysiol. 95, 535–545 (2006).
[13] [13] G¨ahwiler, B. H., Capogna, M. and Debanne, D., Organotypic slice cultures: a technique has come of age,” Trends Neurosci. 20(10), 471–477 (1997).
[14] [14] Larkum, M. E., Kaiser, K. M. M. and Sakmann, B., “Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials,” Proc. Natl. Acad. Sci. 96, 14600–14604 (1998).
[15] [15] Markram, H., Helm, P. J. and Sakmann, B., “Dendritic calcium transients evoked by single back-propagating action potentials in neocortical pyramidal neurons,” J. Physiol. 485, 1–20 (1995).
[16] [16] Lv, X. H., Zhan, C., Zeng, S. Q., Chen, W. R. and Luo, Q. M., “Construction of multiphoton laser scanning microscope based on dual-axis acoustooptic deflector,” Rev. Sci. Instrum. 77, 046101-3 (2006).
[17] [17] Watanabe, S., Hong, M., Ross, N. L. and Ross, W. N., “Modulation of calcium wave propagation in the dendrites and to the soma of rat hippocampal pyramidal neurons,” J. Physiol. 575, 455–468 (2006).
[18] [18] Koester, H. J. and Sakmann, B., “Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials,” Proc. Natl. Acad. Sci. 95, 9596–9601 (1998).
[19] [19] Oakley, J. C., Schwindt, P. C. and Crill, W. E., “Dendritic calcium spikes in layer 5 pyramidal neurons amplify and limit transmission of ligand-gated dendritic current to soma,” J. Neurophysiol. 86, 514–527 (2001).
[20] [20] Larkum, M. E., Senn, W. and L¨uscher, H. R., “Topdown dendritic input increases the gain of layer 5 pyramidal neurons,” Cerebral Cortex 14, 1059–1070 (2004).
[21] [21] Oviedo, H. and Reyes, A. D., “Variation of input– output properties along the somatodendritic axis of pyramidal neurons,” J. Neurosci. 25, 4985–4995 (2005).
[22] [22] Schiller, J., Schiller, Y., Stuart, G. J. and Sakmann, B., “Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons,” J. Physiol. 505, 605–616 (1997).
[23] [23] Bannister, N. J. and Larkman, A. U., “Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus II Spine distributions,” J. Comp. Neurol. 360, 161–171 (1995).
[24] [24] Megias, M., Emri, Z., Freund, T. F. and Gulyas, A. I., “Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells,” Neuroscience 102, 527–540 (2001).
[25] [25] Jacob, S. N., Choe, C. U., Uhlen, P., DeGray, B., Yeckel, M. F. and Ehrlich, B. E., “Signaling microdomains regulate inositol 1,4,5-trisphosphatemediated intracellular calcium transients in cultured neurons,” J. Neurosci. 25, 2853–2864 (2005).
[26] [26] Schiller, J., Helmchen, F. and Sakmann, B., “Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurons,” J. Physiol. 487, 583–600 (1995).
[27] [27] Connors, B. W., Gutnick, M. J. and Prince, D. A., “Electrophysiological properties of neocortical neurons in vitro,” J. Neurophysiol. 48, 1302–1320 (1982).
[28] [28] Helmchen, F., Svoboda, K., Denk, W. and Tank, D. W., “In vivo dendritic calcium dynamics in deeplayer cortical pyramidal neurons,” Nat. Neurosci. 2, 989–996 (1999).
[29] [29] Ha¨usser, M., Major, G. and Stuart, G., “Differential shunting of EPSPs by action potentials,” Science 291, 138–141 (2001).
[30] [30] Saggau, P., “New methods and uses for fast optical scanning,” Current Opinion Neurobiol. 16, 543–550 (2006).
Get Citation
Copy Citation Text
YUXIANG WU, XIULI LIU, WEI ZHOU, XIAOHUA LV, SHAOQUN ZENG. OBSERVING NEURONAL ACTIVITIES WITH RANDOM ACCESS TWO-PHOTON MICROSCOPE[J]. Journal of Innovative Optical Health Sciences, 2009, 2(1): 67
Received: --
Accepted: --
Published Online: Jan. 10, 2019
The Author Email: ZENG SHAOQUN (sqzeng@mail.hust.edu.cn)
CSTR:32186.14.