Opto-Electronic Engineering, Volume. 51, Issue 5, 240050(2024)

Sparse feature image classification network with spatial position correction

Wentao Jiang1... Chen Chen1,* and Shengchong Zhang2 |Show fewer author(s)
Author Affiliations
  • 1College of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 2Key Laboratory of Optoelectronic Information Control and Security Technology, Tianjin 300308, China
  • show less
    Figures & Tables(20)
    SSCNet network structure
    Comparison of convolution operations before and after modifying the size of the first layer convolution kernel
    SSEF module
    Spatial position rectification symmetric attention
    Coordinate attention structure
    Max coordinate attention structure
    Three types of residual blocks. (a) Basic block;(b) Residual block;(c) APM
    The arrangement of APM-Block and SSEF module positions and quantities
    Influence of different convolutional kernel sizes on classification accuracy
    Influence of different learning rates on classification accuracy
    Comparison of feature maps before and after SPCS module
    Classification accuracy of each network on different datasets. (a) CIFAR-10;(b) CIFAR-100; (c) SVHN; (d) Imageneete
    Visualization images of heat maps for different networks
    • Table 1. Accuracy under different N values

      View table
      View in Article

      Table 1. Accuracy under different N values

      N243264128
      ACC/%72.1976.5378.9177.78
    • Table 2. Experimental datasets

      View table
      View in Article

      Table 2. Experimental datasets

      DatasetSizeClassificationTrainsetTestset
      CIFAR-1032×32105000010000
      CIFAR-10032×321005000010000
      SVHN32×32107325726032
      Imagenette224×2241094693925
      Imagewoof224×2241090253929
    • Table 3. Influence of different positions and numbers of SSEF modules and APM-Blocks on classification accuracy

      View table
      View in Article

      Table 3. Influence of different positions and numbers of SSEF modules and APM-Blocks on classification accuracy

      CIFAR-10/%CIFAR-100/%SVHN/%Imagenette/%Imagewoof/%
      A94.7977.2295.6386.7680.56
      B95.1977.8696.3787.1781.17
      C95.1377.6396.2587.0980.86
      D95.2778.0396.3587.1281.06
      E95.8978.7996.9787.7981.35
      F95.7678.5796.5687.6481.29
      G95.6978.6396.8987.7281.41
      H96.7280.6397.4388.7582.09
      I96.3780.1297.2688.3981.71
      J96.1379.8197.1988.2781.63
      K96.4680.5297.3188.5181.76
    • Table 4. The impact of SSEF module on parameters and accuracy

      View table
      View in Article

      Table 4. The impact of SSEF module on parameters and accuracy

      ModuleParamACC/%Loss
      S14569678.120.82
      S24569678.530.79
      S34992078.190.81
      SSEF1350478.960.76
    • Table 5. The impact of parameters reduction on computational efficiency under different networks

      View table
      View in Article

      Table 5. The impact of parameters reduction on computational efficiency under different networks

      NetworkSpeed/(f/s)Params/MFLOPs/GACC/%
      Multi-ResNet[22]1.6251.2337.9378.68
      ResNet-PSE[16]2.2340.5627.5672.81
      ResNeXt-PSE[16]2.0747.2931.3477.32
      SSLLNet[23]2.5731.5720.8679.23
      ATONet[24]2.8830.1216.9178.54
      SSCNet3.0521.3611.7180.63
    • Table 6. Ablation experiments between different modules on different datasets

      View table
      View in Article

      Table 6. Ablation experiments between different modules on different datasets

      GroupSPCSSSEFAPMACC1/%ACC2/%ACC3/%ACC4/%Speed/ (f/s)FLOPs/G
      1-90.2369.6392.8983.672.8513.93
      2-92.3675.5194.1785.232.3226.67
      3-95.6777.3496.5687.092.9612.36
      496.7280.6397.4388.753.0511.17
    • Table 7. Different metrics for each network on five datasets

      View table
      View in Article

      Table 7. Different metrics for each network on five datasets

      NetworkCIFAR10CIFAR-100/%SVHNImagenette/%Imagewoof/%Speed/(f/s)Params/MFLOPs/G
      ResNet-34[5]87.8268.9291.3984.9178.863.0221.3211.63
      HO-ResNet[10]96.3277.1295.6986.2379.641.9350.2635.69
      CAPRDenseNet[25]94.2478.8494.9587.5680.792.8625.5117.73
      MobileNet-LAM[18]89.3768.09------------------------------------
      Multi-ResNet[22]94.5678.6894.5887.6981.211.6251.2337.93
      Couplformer[26]93.5473.9294.2685.1379.082.7327.6314.29
      ResNet-PSE[16]92.8972.8196.1485.0979.132.2340.5627.56
      ResNeXt-PSE[16]93.9277.3296.5486.2780.662.0747.2931.34
      ATONet[24]94.5178.5495.2186.6780.192.8830.1216.91
      QKFormer[27]96.1880.2697.1388.3281.652.3635.6226.39
      TLENet[28]95.4678.4296.8387.6280.572.1946.6730.57
      SSLLNet[23]95.5179.2396.9187.9380.892.5731.5720.86
      SSCNet96.7280.6397.4388.7582.093.0521.3611.71
    Tools

    Get Citation

    Copy Citation Text

    Wentao Jiang, Chen Chen, Shengchong Zhang. Sparse feature image classification network with spatial position correction[J]. Opto-Electronic Engineering, 2024, 51(5): 240050

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Mar. 6, 2024

    Accepted: Apr. 24, 2024

    Published Online: Jul. 31, 2024

    The Author Email: Chen Chen (陈晨)

    DOI:10.12086/oee.2024.240050

    Topics