Optics and Precision Engineering, Volume. 17, Issue 7, 1774(2009)
Image denoising using non-Gaussian bivariate model based on non-aliasing Curvelet transform
[1] [1] CANDES E J,DONOHO D L.Curvelet a surprisingly effective nonadaptive representation for object with edges[C] .C.Rabut A.Cohen,L.L.Schumaker.Curves and Surfaces.Nashville,TN:Vanderbilt University Press,2000:105-120.
[2] [2] STACK J L,CANDES E J,DONOHO D L.The Curvelet transform for image denoising[J].IEEE Trans.on Image Processing,2002,11(6):670-684.
[3] [3] CANDES E J,DEMANET L,DONOHO D L,et al..Fast discrete Curvelet transforms[J].Applied and Computational Mathematics,California Institute of Technology,2005:1-43.
[5] [5] JIAO L CH,TAN SH.Development and prospect of image multiscale geometric analysis[J].ACTA.Electronic Sinca.,2003,31(12A):1975-1981.(in Chinese)
[6] [6] LONG G,XIAO L,CHEN X Q.Overview of the applications of Curvelet transform in image processing [J].Journal of Computer Research and Development,2005,42(8):1331-1337.(in Chinese)
[7] [7] DING N,ZHOU X ZH.Time series forecasting based on improved a trous algorithm[J].Journal of System Simulation,2007,19(17):4082-4085.(in Chinese)
[8] [8] XIAO X K,LI SH F.Edge-preserving image denoising method using Curvelet transform[J].Journal of China Institute of Communications,2004,25(2):9-15.(in Chinese)
[9] [9] KINGSBURY N G.The dual-tree complex wavelet transform:a new technique for shift invariance and directional filters[C] .IEEE Signal Processing Scoiety eds.Proceedings of the 8 th IEEE Digital Signal Processing Workshop,Bryce Canyon UT,USA,1998.
[10] [10] SENDUR L,SELESNICK I W.Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J].IEEE Trans.Signal Processing,2002,50(11):2744-2756.
[11] [11] CHANG S G,BIN Y,VETTERLI M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Trans.on Image Processing,2000,9(9):1532-1546.
[12] [12] JIN H Y,JIAO L CH,LIU F.SAR image denoising based on Curvelet domain Hidden Markov tree models[J].Chinese Journal of Computer,2007,30(3):491-497.(in Chinese)
Get Citation
Copy Citation Text
YAN He, PAN Ying-jun, LIU Jia-ling, ZHAO Ming-fu. Image denoising using non-Gaussian bivariate model based on non-aliasing Curvelet transform[J]. Optics and Precision Engineering, 2009, 17(7): 1774
Category:
Received: Oct. 14, 2008
Accepted: --
Published Online: Oct. 28, 2009
The Author Email: He YAN (cqyanhe@163.com)
CSTR:32186.14.