Bulletin of the Chinese Ceramic Society, Volume. 42, Issue 7, -1(2023)

Composition Design of Light and Low Expansion Glass Curtain Walls Based on Machine Learning

TIAN Jing1... HUANG Yiping1, MIAO Enxin2, LI Yuan1, LIU Junbo1, ZHANG Bentao1, LIU Yong1 and HAN Gaorong1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(39)

    [1] [1] 2603-2612

    [3] [3] HONMA T, MAEDA K, NAKANE S, et al. Unique properties and potential of glass-ceramics[J]. Journal of the Ceramic Society of Japan, 2022, 130(8): 545-551.

    [4] [4] ROSCH W, BEALL L, MAXON J, et al. Corning ULE glass can meet P-37 specifications[C]//SPIE Advanced Lithography. Proc SPIE 6517, Emerging Lithographic Technologies XI, San Jose, California, USA. 2007, 6517: 622-629.

    [5] [5] SABIA R, EDWARDS M J, VANBROCKLIN R, et al. Corning 7972 ULE material for segmented and large monolithic mirror blanks[C]//SPIE Astronomical Telescopes Instrumentation. Proc SPIE 6273, Optomechanical Technologies for Astronomy, Orlando, Florida, USA. 2006, 6273: 12-19.

    [6] [6] SMEDSKJAER M M, YOUNGMAN R E, MAURO J C. Principles of Pyrex glass chemistry: structure-property relationships[J].Applied Physics A, 2014, 116(2): 491-504.

    [7] [7] JACKSON MJ, MILLS B. Thermal expansion of alumino-alkalisilicate and alumino-borosilicate glasses- comparison of empirical models[J]. Journal of Materials Science Letters, 1997, 16(15): 1264-1266.

    [9] [9] ABD EL-MONEIM A, YOUSSOF I M, SHOAIB M M. Elastic moduli prediction and correlation in SiO2-based glasses[J]. Materials Chemistry and Physics, 1998, 52(3): 258-262.

    [10] [10] ZENG H D, YE F, LI X, et al. Calculation of thermal expansion coefficient of glasses based on topological constraint theory[J]. Chemical Physics Letters, 2016, 662: 268-272.

    [12] [12] LI N, SAKIDJA R, ARYAL S, et al. Densification of a continuous random network model of amorphous SiO2 glass[J]. Physical Chemistry Chemical Physics, 2014, 16(4): 1500-1514.

    [13] [13] MACHACEK J, GEDEON O, LISKA M. Elastic properties of soda-lime silica glass from first principles[J]. Ceramics-Silikaty, 2009, 53(2): 137-140.

    [14] [14] ZHANG Q Y, ZHANG W J, WANG W C, et al. Calculation of physical properties of glass via the phase diagram approach[J]. Journal of Non-Crystalline Solids, 2017, 457: 36-43.

    [15] [15] JIANG Z H, ZHANG Q Y. The structure of glass: a phase equilibrium diagram approach[J]. Progress in Materials Science, 2014, 61: 144-215.

    [16] [16] ZANOTTO E D, COUTINHO F A B. How many non-crystalline solids can be made from all the elements of the periodic table?[J]. Journal of Non-Crystalline Solids, 2004, 347(1/2/3): 285-288.

    [19] [19] LIU Y, GUO B R, ZOU X X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Materials, 2020, 31: 434-450.

    [21] [21] DE PABLO J J, JACKSON N E, WEBB M A, et al. New frontiers for the materials genome initiative[J]. Computational Materials, 2019, 5: 41.

    [22] [22] LIU H, FU Z P, YANG K, et al. Machine learning for glass science and engineering: a review[J]. Journal of Non-Crystalline Solids, 2021, 557: 119419.

    [23] [23] MAURO J C, TANDIA A, VARGHEESE K D, et al. Accelerating the design of functional glasses through modeling[J]. Chemistry of Materials, 2016, 28(12): 4267-4277.

    [24] [24] CASSAR D R, DE CARVALHO A C P L F, ZANOTTO E D. Predicting glass transition temperatures using neural networks[J]. Acta Materialia, 2018, 159: 249-256.

    [25] [25] CASSAR D R, MASTELINI S M, BOTARI T, et al. Predicting and interpreting oxide glass properties by machine learning using large datasets[J]. Ceramics International, 2021, 47(17): 23958-23972.

    [26] [26] DENG B H. Machine learning on density and elastic property of oxide glasses driven by large dataset[J]. Journal of Non-Crystalline Solids, 2020, 529: 119768.

    [27] [27] YANG K, XU X Y, YANG B, et al. Predicting the Young’s modulus of silicate glasses using high-throughput molecular dynamics simulations and machine learning[J]. Scientific Reports, 2019, 9: 8739.

    [28] [28] HU Y J, ZHAO G, ZHANG M F, et al. Predicting densities and elastic moduli of SiO2-based glasses by machine learning[J]. Computational Materials, 2020, 6: 25.

    [29] [29] RAVINDER R, SRIDHARA K H, BISHNOI S, et al. Deep learning aided rational design of oxide glasses[J]. Materials Horizons, 2020, 7(7): 1819-1827.

    [30] [30] EPAM systems. Sciglass database[DB/OL]. (2019-11-06)[2023-05-06]. https://github.com/epam/SciGlass.

    [31] [31] LUNDBERG S, LEE S I. A Unified approach to interpreting model predictions[C]// 31st Annual Conference on Neural Information Processing Systems, Long Beach, America, 2017.

    [32] [32] BREIMAN L. Random forests[J].Machine Learning, 2001, 45(1): 5-32.

    [33] [33] BIAU G, SCORNET E. A random forest guided tour[J].TEST, 2016, 25(2): 197-227.

    [34] [34] SCHONLAU M, ZOU R Y. The random forest algorithm for statistical learning[J]. The Stata Journal: Promoting Communications on Statistics and Stata, 2020, 20(1): 3-29.

    [35] [35] PEDREGOSA F, VAROQUAUX G, GRAMFORT A. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830.

    [37] [37] PEDONE A, MALAVASI G, CORMACK A N, et al. Insight into elastic properties of binary alkali silicate glasses: prediction and interpretation through atomistic simulation techniques[J]. Chemistry of Materials, 2007, 19(13): 3144-3154.

    [38] [38] LUO Z W, LEI W C, LIANG H Z, et al. Improving sealing properties of CaO-SrO-Al2O3-SiO2 glass and glass-ceramics for solid oxide fuel cells: effect of La2O3 addition[J]. Ceramics International, 2020, 46(11): 17698-17706.

    [40] [40] KE Z K, CAO X, SHAN C L, et al. The effect of alkali metal oxide on the properties of borosilicate fireproof glass: structure, thermal properties, viscosity, chemical stability[J]. Ceramics International, 2021, 47(14): 19605-19613.

    [41] [41] KILINC E, BELL A M T, BINGHAM P A, et al. Effects of composition and phase relations on mechanical properties and crystallization of silicate glasses[J]. Journal of the American Ceramic Society, 2021, 104(8): 3921-3946.

    [42] [42] MASAI H, FUJII Y, KITAMURA N, et al. Relationship between the elastic properties and structure of BaO-TiO2-GeO2-SiO2 glasses[J]. Journal of Non-Crystalline Solids, 2022, 576: 121248.

    [43] [43] CUI J D, CAO X, SHI L F, et al. The effect of substitution of Al2O3 and B2O3 for SiO2 on the properties of cover glass for liquid crystal display: structure, thermal, visco-elastic, and physical properties[J]. International Journal of Applied Glass Science, 2021, 12(3): 443-456.

    [44] [44] NEMBRINI S, KNIG I, WRIGHT M N. The revival of the gini importance?[J]. Bioinformatics, 2018, 34: 3711-3718.

    [46] [46] LUNDBERG S M, ERION G, CHEN H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence, 2020, 2(1): 56-67.

    [49] [49] GAO C X, ZHAO X X, LI B. Influence of Y2O3 on microstructure, crystallization, and properties of MgO-Al2O3-SiO2 glass-ceramics[J]. Journal of Non-Crystalline Solids, 2021, 560: 120728.

    [51] [51] YOSHIDA S, TANAKA H, HAYASHI T, et al. Scratch resistance of sodium borosilicate glass[J]. Journal of the Ceramic Society of Japan, 2001, 109(1270): 511-515.

    CLP Journals

    [1] GAO Yubo, GE Yanxin, LU Tao, CAI Xuanming, ZHANG Hongyan. Local Deformation Characteristics of Al2O3/SiC Multiphase Ceramics Under Impact Loading[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3114

    Tools

    Get Citation

    Copy Citation Text

    TIAN Jing, HUANG Yiping, MIAO Enxin, LI Yuan, LIU Junbo, ZHANG Bentao, LIU Yong, HAN Gaorong. Composition Design of Light and Low Expansion Glass Curtain Walls Based on Machine Learning[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): -1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 13, 2023

    Accepted: --

    Published Online: Nov. 1, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics